Stability test of multidimensional discrete-time systems via sum-of-squares decomposition

A new stability test for d-dimensional discrete-time systems is presented. It consists of maximizing the minimum eigenvalue of a positive definite Gram matrix associated with a polynomial positive on the unit d-circle. This formulation is based on expressing the polynomial as a sum-of-squares and leads to a semidefinite programming (SDP) problem. Several heuristics are introduced for reducing the complexity of the problem in the case of sparse polynomials. Although in its practical form the test is based on a sufficient condition, the experimental results show that correct stability decisions are given. Comparisons with previous methods are favorable.

[1]  Hugo J. Woerdeman,et al.  Spectral Factorizations and Sums of Squares Representations via Semidefinite Programming , 2001, SIAM J. Matrix Anal. Appl..

[2]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[3]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[4]  T. Ooba On stability analysis of 2-D systems based on 2-D Lyapunov matrix inequalities , 2000 .

[5]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[6]  Michael G. Strintzis,et al.  Tests of stability of multidimensional filters , 1977 .

[7]  C. Du,et al.  Stability analysis and stabilization of uncertain two-dimensional discrete systems: an LMI approach , 1999 .

[8]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[9]  N. Mastorakis,et al.  Stability of multidimensional systems using genetic algorithms , 2003 .

[10]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[11]  A. Megretski Positivity of trigonometric polynomials , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[12]  O. Toker,et al.  On the complexity of purely complex μ computation and related problems in multidimensional systems , 1998, IEEE Trans. Autom. Control..

[13]  Daniel Boley,et al.  A simple method to determine the stability and margin of stability of 2-D recursive filters , 1992 .

[14]  N. Z. Shor Class of global minimum bounds of polynomial functions , 1987 .

[15]  Truong Q. Nguyen,et al.  Robust Mixed Filtering of 2-D Systems , 2002 .

[16]  M. S. Hrishikesh,et al.  A new transform for the stabilization and stability testing of multidimensional recursive digital filters , 2000 .

[17]  M. Fahmy,et al.  Stability and overflow oscillations in 2-D state-space digital filters , 1981 .

[18]  R. Eising,et al.  Realization and stabilization of 2-d systems , 1978 .

[19]  Ezra Zeheb,et al.  Zero sets of multiparameter functions and stability of multidimensional systems , 1981 .

[20]  Brian D. O. Anderson,et al.  Stability and the matrix Lyapunov equation for discrete 2-dimensional systems , 1986 .

[21]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[22]  E. Curtin,et al.  Stability and margin of stability tests for multidimensional filters , 1999 .

[23]  Petre Stoica,et al.  On the parameterization of positive real sequences and MA parameter estimation , 2001, IEEE Trans. Signal Process..

[24]  Truong Q. Nguyen,et al.  Robust mixed 𝒽2/𝒽∞ filtering of 2-D systems , 2002, IEEE Trans. Signal Process..

[25]  K. Galkowski,et al.  LMI approach to state-feedback stabilization of multidimensional systems , 2003 .