DE-ForABSA: A Novel Approach to Forecast Automobiles Sales Using Aspect Based Sentiment Analysis and Differential Evolution

Today,amongstthevariousformsofonlinedata,userreviewsareveryusefulinunderstandingthe user’sattitude,emotionandsentimenttowardsaproduct.Inthisarticle,anovelmethod,namedas DE-ForABSAisproposedtoforecastautomobilessalesbasedonaspectbasedsentimentanalysis (ABSA) and ClusFuDE [8] (a hybrid forecasting model). DE-ForABSA consists of two phases –first,extracteduserreviewsofanautomobileareanalysedusingABSA.InABSA,thereviews arepre-processed;aspectsareextracted&aggregatedtodeterminethepolarityscoreofreviews. Second, uses of ClusFuDE consisting of clustering, fuzzy logical relationships and Differential Evolution(DE)topredictthesalesoftheautomobile.DEisapopulation-basedsearchmethodto optimizerealvaluesunderthecontroloftwooperators:mutation&crossover.Scorefromphase1 isaparameterindifferentialmutationinphase2.Theproposedmethodistestedonreviews&sales dataofautomobile.TheempiricalresultsshowaMeanSquareErrorof142.90whichindicatesan effectiveconsistencyofthemodel KEywoRDS Aspect Based Sentiment Analysis, Automatic Clustering, Differential Evolution, Fuzzy Logical Relationships, Forecasting

[1]  Zuo-Jun Max Shen,et al.  An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results , 2002, Ann. Oper. Res..

[2]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[3]  J. Lagarto,et al.  Price forecasting in the day-ahead Iberian electricity market using a conjectural variations ARIMA model , 2012, 2012 9th International Conference on the European Energy Market.

[4]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[5]  Oscar Castillo,et al.  ClusFuDE: Forecasting low dimensional numerical data using an improved method based on automatic clustering, fuzzy relationships and differential evolution , 2018, Eng. Appl. Artif. Intell..

[6]  Sandra Paterlini,et al.  Differential evolution and particle swarm optimisation in partitional clustering , 2006, Comput. Stat. Data Anal..

[7]  Diab M. Diab,et al.  Using differential evolution for improving distance measures of nominal values , 2018, Appl. Soft Comput..

[8]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[9]  Nisheeth Joshi,et al.  A Novel Approach to Feature Hierarchy in Aspect Based Sentiment Analysis Using OWA Operator , 2019 .

[10]  Diab M. Diab,et al.  Using differential evolution for fine tuning naïve Bayesian classifiers and its application for text classification , 2017, Appl. Soft Comput..

[11]  Alper Ünler,et al.  Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025 , 2008 .

[12]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[13]  Panagiotis Patrinos,et al.  Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing , 2006 .

[14]  Qi Wu,et al.  Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system , 2010, J. Comput. Appl. Math..

[15]  Devendra K. Tayal,et al.  A New Scale Factor for Differential Evolution Optimization , 2012 .

[16]  Amit Konar,et al.  Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives , 2008, Advances of Computational Intelligence in Industrial Systems.

[17]  R. J. Kuo,et al.  A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm , 2001, Eur. J. Oper. Res..

[18]  Yong Hu,et al.  Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review , 2015, Appl. Soft Comput..

[19]  A new crossover operator in Differential Evolution for numerical optimization , 2012, 2012 International Conference on Communication, Information & Computing Technology (ICCICT).

[20]  Ilona Weinreich,et al.  Wavelet-based prediction of oil prices , 2005 .

[21]  Aytug Onan,et al.  A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification , 2016, Expert Syst. Appl..

[22]  Kazuo Asakawa,et al.  Stock market prediction system with modular neural networks , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[23]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[24]  Kuo-Kun Tseng,et al.  Price prediction of e-commerce products through Internet sentiment analysis , 2018, Electron. Commer. Res..