Dynamics of the Lü System on the Invariant Algebraic Surface and at infinity
暂无分享,去创建一个
[1] Marcelo Messias,et al. Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system , 2009 .
[2] Guanrong Chen,et al. An Unusual 3D Autonomous Quadratic Chaotic System with Two Stable Node-Foci , 2010, Int. J. Bifurc. Chaos.
[3] Zhang Xiang,et al. Integrals of motion of the Rabinovich system , 2000 .
[4] J. Moulin-Ollagnier,et al. Polynomial first integrals of the Lotka-Volterra system , 1997 .
[5] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[6] Jaume Llibre,et al. Global dynamics of the Rikitake system , 2009 .
[7] Formal and analytic integrability of the Lorenz system , 2005 .
[8] Xiang Zhang,et al. Dynamics of the Lorenz system having an invariant algebraic surface , 2007 .
[9] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[10] Guanrong Chen,et al. Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.
[11] Jaume Llibre,et al. On the global dynamics of the Rabinovich system , 2008 .
[12] Qigui Yang,et al. Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria , 2011 .
[13] Boundedness, invariant algebraic surfaces and global dynamics for a spectral model of large-scale atmospheric circulation , 2005 .
[14] O. Rössler. An equation for continuous chaos , 1976 .
[15] Jaume Llibre,et al. Bounded polynomial vector fields , 1990 .
[16] Daizhan Cheng,et al. Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.
[17] Xiang Zhang,et al. Invariant algebraic surfaces of the Lorenz system , 2002 .
[18] Jean Moulin Ollagnier,et al. Rational integration of the Lotka–Volterra system , 1999 .
[19] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[20] Qigui Yang,et al. Dynamics of a new Lorenz-like chaotic system , 2010 .
[21] The topological structure of the Rabinovich system having an invariant algebraic surface , 2008 .
[22] S. Neukirch,et al. Integrals of motion and the shape of the attractor for the Lorenz model , 1997, chao-dyn/9702016.
[23] Xiang Zhang,et al. The Chen System Having an Invariant Algebraic Surface , 2008, Int. J. Bifurc. Chaos.
[24] Xiang Zhang,et al. Darboux Polynomials and Algebraic Integrability of the Chen System , 2007, Int. J. Bifurc. Chaos.