Dynamics of the Lü System on the Invariant Algebraic Surface and at infinity

Firstly, the dynamics of the Lu system having an invariant algebraic surface are analyzed. Secondly, by using the Poincare compactification in ℝ3, a global analysis of the system is presented, including the complete description of its dynamic behavior on the sphere at infinity. Lastly, combining analytical and numerical techniques, it is shown that for the parameter value b = 0, the system presents an infinite set of singularly degenerate heteroclinic cycles. The chaotic attractors for the Lu system in the case of small b > 0 are found numerically, hence the singularly degenerate heteroclinic cycles.

[1]  Marcelo Messias,et al.  Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system , 2009 .

[2]  Guanrong Chen,et al.  An Unusual 3D Autonomous Quadratic Chaotic System with Two Stable Node-Foci , 2010, Int. J. Bifurc. Chaos.

[3]  Zhang Xiang,et al.  Integrals of motion of the Rabinovich system , 2000 .

[4]  J. Moulin-Ollagnier,et al.  Polynomial first integrals of the Lotka-Volterra system , 1997 .

[5]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[6]  Jaume Llibre,et al.  Global dynamics of the Rikitake system , 2009 .

[7]  Formal and analytic integrability of the Lorenz system , 2005 .

[8]  Xiang Zhang,et al.  Dynamics of the Lorenz system having an invariant algebraic surface , 2007 .

[9]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[10]  Guanrong Chen,et al.  Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.

[11]  Jaume Llibre,et al.  On the global dynamics of the Rabinovich system , 2008 .

[12]  Qigui Yang,et al.  Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria , 2011 .

[13]  Boundedness, invariant algebraic surfaces and global dynamics for a spectral model of large-scale atmospheric circulation , 2005 .

[14]  O. Rössler An equation for continuous chaos , 1976 .

[15]  Jaume Llibre,et al.  Bounded polynomial vector fields , 1990 .

[16]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[17]  Xiang Zhang,et al.  Invariant algebraic surfaces of the Lorenz system , 2002 .

[18]  Jean Moulin Ollagnier,et al.  Rational integration of the Lotka–Volterra system , 1999 .

[19]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[20]  Qigui Yang,et al.  Dynamics of a new Lorenz-like chaotic system , 2010 .

[21]  The topological structure of the Rabinovich system having an invariant algebraic surface , 2008 .

[22]  S. Neukirch,et al.  Integrals of motion and the shape of the attractor for the Lorenz model , 1997, chao-dyn/9702016.

[23]  Xiang Zhang,et al.  The Chen System Having an Invariant Algebraic Surface , 2008, Int. J. Bifurc. Chaos.

[24]  Xiang Zhang,et al.  Darboux Polynomials and Algebraic Integrability of the Chen System , 2007, Int. J. Bifurc. Chaos.