The dependence of the Schottky barrier height on carbon nanotube diameter for Pd–carbon nanotube contacts

Direct measurements are presented of the Schottky barrier (SB) heights of carbon nanotube devices contacted with Pd electrodes. The SB barrier heights were determined from the activation energy of the temperature-dependent thermionic emission current in the off-state of the devices. The barrier heights generally decrease with increasing diameter of the nanotubes and they are in agreement with the values expected when assuming little or no influence of Fermi level pinning.

[1]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[2]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[3]  Kyeongjae Cho,et al.  Ab initio study of Schottky barriers at metal-nanotube contacts , 2004 .

[4]  J. Palacios,et al.  Metal contacts in carbon nanotube field-effect transistors: Beyond the Schottky barrier paradigm , 2007, 0705.1328.

[5]  C Lavoie,et al.  Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. , 2001, Physical review letters.

[6]  R. T. Tung Formation of an electric dipole at metal-semiconductor interfaces , 2001 .

[7]  Leonard,et al.  Role of fermi-level pinning in nanotube schottky diodes , 2000, Physical review letters.

[8]  François Léonard,et al.  Size-dependent effects on electrical contacts to nanotubes and nanowires. , 2006, Physical review letters.

[9]  Jason L. Johnson,et al.  Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film–GaAs Schottky contacts , 2008 .

[10]  S. M. Sze,et al.  Current transport in metal-semiconductor-metal (MSM) structures , 1971 .

[11]  T Mizutani,et al.  Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors , 2006, Nanotechnology.

[12]  Satoru Suzuki,et al.  Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles , 2000 .

[13]  Michael S. Fuhrer,et al.  High-Mobility Nanotube Transistor Memory , 2002 .

[14]  Marcus Freitag,et al.  Controlled creation of a carbon nanotube diode by a scanned gate , 2001 .

[15]  Qian Wang,et al.  Electrical contacts to carbon nanotubes down to 1nm in diameter , 2005 .

[16]  Ophir Vermesh,et al.  Hysteresis caused by water molecules in carbon nanotube field-effect transistors , 2003 .

[17]  A. Fujiwara,et al.  Device characteristics of carbon nanotube transistor fabricated by direct growth method , 2008 .

[18]  M. Shiraishi,et al.  Work function of carbon nanotubes , 2001 .

[19]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[20]  Gengmin Zhang,et al.  Work function of single-walled carbon nanotubes determined by field emission microscopy , 2002 .

[21]  Charles M. Lieber,et al.  Vectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes , 2002 .

[22]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[23]  M. Fuhrer,et al.  Tuning from thermionic emission to ohmic tunnel contacts via doping in Schottky-barrier nanotube transistors. , 2006, Nano letters.

[24]  M. Radosavljevic,et al.  Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.

[25]  P. Avouris,et al.  Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. , 2007, Nano letters.

[26]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[27]  James Hone,et al.  Scaling of resistance and electron mean free path of single-walled carbon nanotubes. , 2007, Physical review letters.