Biosynthetic concepts for the production of β‐lactam antibiotics in Penicillium chrysogenum

Industrial production of β‐lactam antibiotics by the filamentous fungus Penicillium chrysogenum is based on successive classical strain improvement cycles. This review summarizes our current knowledge on the results of this classical strain improvement process, and discusses avenues to improve β‐lactam biosynthesis and to exploit P. chrysogenum as an industrial host for the production of other antibiotics and peptide products. Genomic and transcriptional analysis of strain lineages has led to the identification of several important alterations in high‐yielding strains, including the amplification of the penicillin biosynthetic gene cluster, elevated transcription of genes involved in biosynthesis of penicillin and amino acid precursors, and genes encoding microbody proliferation factors. In recent years, successful metabolic engineering and synthetic biology approaches have resulted in the redirection of the penicillin pathway towards the production of cephalosporins. This sets a new direction in industrial antibiotics productions towards more sustainable methods for the fermentative production of unnatural antibiotics and related compounds.

[1]  Marten Veenhuis,et al.  Autophagy Deficiency Promotes β-Lactam Production in Penicillium chrysogenum , 2010, Applied and Environmental Microbiology.

[2]  A. Driessen,et al.  Nonlinear Biosynthetic Gene Cluster Dose Effect on Penicillin Production by Penicillium chrysogenum , 2010, Applied and Environmental Microbiology.

[3]  Jan A. K. W. Kiel,et al.  Peroxisomes Are Required for Efficient Penicillin Biosynthesis in Penicillium chrysogenum , 2010, Applied and Environmental Microbiology.

[4]  Birgit Hoff,et al.  Two Components of a velvet-Like Complex Control Hyphal Morphogenesis, Conidiophore Development, and Penicillin Biosynthesis in Penicillium chrysogenum , 2010, Eukaryotic Cell.

[5]  A. Driessen,et al.  Phylogenetic analysis of fungal ABC transporters , 2010, BMC Genomics.

[6]  C. García-Estrada,et al.  Proteome Analysis of the Penicillin Producer Penicillium chrysogenum , 2010, Molecular & Cellular Proteomics.

[7]  W. V. van Gulik,et al.  An Engineered Yeast Efficiently Secreting Penicillin , 2009, PloS one.

[8]  J. Hiltunen,et al.  An involvement of yeast peroxisomal channels in transmembrane transfer of glyoxylate cycle intermediates. , 2009, The international journal of biochemistry & cell biology.

[9]  J. Pronk,et al.  Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. , 2009, Fungal genetics and biology : FG & B.

[10]  J. Pronk,et al.  Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor. , 2009, Metabolic engineering.

[11]  Jean-Marc Daran,et al.  Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production , 2009, BMC Genomics.

[12]  Carlos García-Estrada,et al.  The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. , 2009, Biochimie.

[13]  P. Jekel,et al.  Characterization of a phenylacetate-CoA ligase from Penicillium chrysogenum. , 2009, The Biochemical journal.

[14]  Miguel C. Teixeira,et al.  Drug:H+ antiporters in chemical stress response in yeast. , 2009, Trends in microbiology.

[15]  Andriy Kovalchuk,et al.  Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum , 2008, Nature Biotechnology.

[16]  R. Fischer Sex and Poison in the Dark , 2008, Science.

[17]  G. Braus,et al.  Animal Versus Wind Dispersal and the Robustness of Tree Species to Deforestation , 2008, Science.

[18]  C. García-Estrada,et al.  The unprocessed preprotein form IATC103S of the isopenicillin N acyltransferase is transported inside peroxisomes and regulates its self-processing. , 2008, Fungal genetics and biology : FG & B.

[19]  Richard Kerkman,et al.  Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255. , 2007, Fungal genetics and biology : FG & B.

[20]  C. García-Estrada,et al.  In vivo transport of the intermediates of the penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum , 2007, Applied Microbiology and Biotechnology.

[21]  U. Kück,et al.  A Homologue of the Aspergillus velvet Gene Regulates both Cephalosporin C Biosynthesis and Hyphal Fragmentation in Acremonium chrysogenum , 2007, Applied and Environmental Microbiology.

[22]  A. Brakhage,et al.  The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis , 2007, Archives of Microbiology.

[23]  Vera Meyer,et al.  Highly efficient gene targeting in the Aspergillus niger kusA mutant. , 2007, Journal of biotechnology.

[24]  J. Martín,et al.  Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. , 2007, Chemistry & biology.

[25]  J. Pronk,et al.  A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. , 2006, FEMS yeast research.

[26]  J. Martín,et al.  Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase. , 2006, The Biochemical journal.

[27]  J. Martín,et al.  Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. , 2005, Current opinion in microbiology.

[28]  Marten Veenhuis,et al.  Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. , 2005, Fungal genetics and biology : FG & B.

[29]  K. Lowe,et al.  The Weak Acid Preservative Sorbic Acid Inhibits Conidial Germination and Mycelial Growth of Aspergillus niger through Intracellular Acidification , 2004, Applied and Environmental Microbiology.

[30]  J. Bok,et al.  LaeA, a Regulator of Secondary Metabolism in Aspergillus spp , 2004, Eukaryotic Cell.

[31]  A. M. Calvo,et al.  The Expression of Sterigmatocystin and Penicillin Genes in Aspergillus nidulans Is Controlled by veA, a Gene Required for Sexual Development , 2003, Eukaryotic Cell.

[32]  R. Elander Industrial production of β-lactam antibiotics , 2003, Applied Microbiology and Biotechnology.

[33]  A. Driessen,et al.  δ-(l-α-Aminoadipyl)-l-cysteinyl-d-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme , 2002 .

[34]  G. Liu,et al.  The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production , 2002, Molecular Genetics and Genomics.

[35]  A. Driessen,et al.  Assessment of the microbody luminal pH in the filamentous fungus Penicillium chrysogenum. , 2002, Biochimica et biophysica acta.

[36]  H. Noorman,et al.  Physiological characterisation of Penicillium chrysogenum strains expressing the expandase gene from Streptomyces clavuligerus during batch cultivations. Growth and adipoyl-7-aminodeacetoxycephalosporanic acid production. , 2001, Applied Microbiology and Biotechnology.

[37]  F. Palmieri,et al.  Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter , 2001, The EMBO journal.

[38]  Ken-ichi Noma,et al.  Transitions in Distinct Histone H3 Methylation Patterns at the Heterochromatin Domain Boundaries , 2001, Science.

[39]  M H Saier,et al.  Phylogeny of multidrug transporters. , 2001, Seminars in cell & developmental biology.

[40]  E. Dassa,et al.  The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. , 2001, Research in microbiology.

[41]  J. Nielsen,et al.  Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. , 2001, Biotechnology and bioengineering.

[42]  J. Tramper,et al.  Equilibrium position, kinetics, and reactor concepts for the adipyl-7-ADCA-hydrolysis process. , 2000, Biotechnology and bioengineering.

[43]  D. Monti,et al.  Characterization of an industrial biocatalyst: immobilized glutaryl-7-ACA acylase. , 2000, Biotechnology and bioengineering.

[44]  A. Driessen,et al.  Sulfur Regulation of the Sulfate Transporter GenessutA and sutB in Penicillium chrysogenum , 2000, Applied and Environmental Microbiology.

[45]  Elke Feldmann,et al.  DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining , 2000, Nucleic Acids Res..

[46]  P. Skatrud,et al.  The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production , 2000, Molecular and General Genetics MGG.

[47]  J. Martín,et al.  A Novel Heptameric Sequence (TTAGTAA) Is the Binding Site for a Protein Required for High Level Expression of pcbAB, the First Gene of the Penicillin Biosynthesis in Penicillium chrysogenum * , 2000, The Journal of Biological Chemistry.

[48]  J. Martín,et al.  Transcription of the pcbAB, pcbC and penDE genes of Penicillium chrysogenum AS-P-78 is repressed by glucose and the repression is not reversed by alkaline pHs. , 1999, Microbiology.

[49]  J. Martín,et al.  Characterization and lysine control of expression of the lys1 gene of Penicillium chrysogenum encoding homocitrate synthase. , 1999, Gene.

[50]  Rudy Pandjaitan,et al.  The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast , 1998, The EMBO journal.

[51]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[52]  D. Ramsden,et al.  Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double‐strand breaks , 1998, The EMBO journal.

[53]  M. Peñalva,et al.  Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB–pcbC promoter of the penicillin biosynthetic cluster , 1996, Molecular microbiology.

[54]  H. von Döhren,et al.  A nonribosomal system of peptide biosynthesis. , 1996, European journal of biochemistry.

[55]  J. Luengo Enzymatic synthesis of hydrophobic penicillins. , 1995, The Journal of antibiotics.

[56]  G. Marzluf,et al.  NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters , 1995, Current Genetics.

[57]  A. Driessen,et al.  Penicillium chrysogenum Takes up the Penicillin G Precursor Phenylacetic Acid by Passive Diffusion , 1995, Applied and environmental microbiology.

[58]  H. Tabak,et al.  The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl‐CoA under in vivo conditions. , 1995, The EMBO journal.

[59]  J. Martín,et al.  The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[60]  E. Espeso,et al.  The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid‐ and alkaline‐expressed genes by ambient pH. , 1995, The EMBO journal.

[61]  A. Goffeau,et al.  Yeast multidrug resistance: The PDR network , 1995, Journal of bioenergetics and biomembranes.

[62]  G. Cohen,et al.  The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis , 1994, Journal of bacteriology.

[63]  E. Espeso,et al.  pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. , 1993, The EMBO journal.

[64]  C. Robinson,et al.  Investigations into the post-translational modification and mechanism of isopenicillin N:acyl-CoA acyltransferase using electrospray mass spectrometry. , 1993, The Biochemical journal.

[65]  M. Teng,et al.  β-Lactamase inhibitors derived from N-tosyloxy-β-lactams , 1993 .

[66]  R. Elander,et al.  Handbook of applied mycology , 1993 .

[67]  R. Cooper,et al.  The enzymes involved in biosynthesis of penicillin and cephalosporin; their structure and function. , 1993, Bioorganic & medicinal chemistry.

[68]  J. Coque,et al.  Genes for a beta‐lactamase, a penicillin‐binding protein and a transmembrane protein are clustered with the cephamycin biosynthetic genes in Nocardia lactamdurans. , 1993, The EMBO journal.

[69]  A. Verkleij,et al.  Involvement of microbodies in penicillin biosynthesis. , 1992, Biochimica et biophysica acta.

[70]  A. Bairoch PROSITE: a dictionary of sites and patterns in proteins. , 1991, Nucleic acids research.

[71]  A. Verkleij,et al.  Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. , 1991, The EMBO journal.

[72]  J. Martín,et al.  The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the alpha-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes. , 1990, The Journal of biological chemistry.

[73]  M. Groenen,et al.  Cloning and characterization of the acyl-coenzyme A: 6-aminopenicillanic-acid-acyltransferase gene of Penicillium chrysogenum. , 1989, Gene.

[74]  S. Queener,et al.  Beta‐lactam biosynthetic genes , 1989, Medicinal research reviews.

[75]  J. Martín,et al.  Purification to homogeneity and characterization of acyl coenzyme A:6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum , 1987, Antimicrobial Agents and Chemotherapy.

[76]  J. Martín,et al.  Glucose represses formation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N synthase but not penicillin acyltransferase in Penicillium chrysogenum , 1986, Journal of bacteriology.

[77]  J. Martín,et al.  Characterization of the biosynthesis in vivo of α-aminoadipyl-cysteinyl-valine inPenicillium chrysogenum , 1985, Applied Microbiology and Biotechnology.

[78]  J. Martín,et al.  Carbon catabolite repression of penicillin biosynthesis by Penicillium chrysogenum. , 1984, The Journal of antibiotics.

[79]  A. Sols,et al.  Studies on the mechanism of the antifungal action of benzoate. , 1983, The Biochemical journal.

[80]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[81]  D. Kell,et al.  On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum. , 1981, Biochemical and biophysical research communications.

[82]  H. Döbeli,et al.  Regulatory properties of O-acetyl-L-serine sulfhydrylase of Cephalosporium acremonium: evidence of an isoenzyme and its importance in cephalosporin C biosynthesis , 1980, Antimicrobial Agents and Chemotherapy.

[83]  H. Macmorine Some factors influencing the production of certain biosynthetic penicillins. , 1957, Applied microbiology.

[84]  A. Fleming,et al.  On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ , 1929 .

[85]  J. Pronk,et al.  The Penicillium chrysogenum aclA gene encodes a broad-substrate-specificity acyl-coenzyme A ligase involved in activation of adipic acid, a side-chain precursor for cephem antibiotics. , 2010, Fungal genetics and biology : FG & B.

[86]  Virginia Todde,et al.  Autophagy: principles and significance in health and disease. , 2009, Biochimica et biophysica acta.

[87]  J. Martín,et al.  Gene organization and plasticity of the β-lactam genes in different filamentous fungi , 2004, Antonie van Leeuwenhoek.

[88]  A. Driessen,et al.  Compartmentalization and transport in beta-lactam antibiotics biosynthesis. , 2004, Advances in biochemical engineering/biotechnology.

[89]  R. Elander Industrial production of beta-lactam antibiotics. , 2003, Applied microbiology and biotechnology.

[90]  H. Noorman,et al.  Influence of the adipate and dissolved oxygen concentrations on the beta-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus. , 2003, Metabolic engineering.

[91]  M. Gottesman,et al.  Multidrug resistance in cancer: role of ATP–dependent transporters , 2002, Nature Reviews Cancer.

[92]  A. Driessen,et al.  d -( L - a -Aminoadipyl)- L -cysteinyl- D -valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme , 2002 .

[93]  A. Brakhage,et al.  Subcellular localization of the homocitrate synthase in Penicillium chrysogenum , 2001, Molecular Genetics and Genomics.

[94]  S. Subramani Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. , 1998, Physiological reviews.

[95]  V. Vinci,et al.  Production of Cephalosporin Intermediates by Feeding Adipic Acid to Recombinant Penicillium chrysogenum Strains Expressing Ring Expansion Activity , 1995, Bio/Technology.

[96]  M. Teng,et al.  beta-Lactamase inhibitors derived from N-tosyloxy-beta-lactams. , 1993, Bioorganic & medicinal chemistry.

[97]  J. Martín,et al.  Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. , 1992, Annual review of microbiology.

[98]  J. Heim,et al.  The biosynthesis of sulfur-containing beta-lactam antibiotics. , 1987, Annual review of microbiology.

[99]  J. Heim,et al.  The Biosynthesis of Sulfur-Containing β-Lactam Antibiotics , 1987 .

[100]  P. Skatrud,et al.  Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. , 1986, Gene.

[101]  M. Cole Formation of 6-aminopenicillanic acid, penicillins, and penicillin acylase by various fungi. , 1966, Applied microbiology.

[102]  H. Raistrick,et al.  Studies in the biochemistry of micro-organisms: The formation from glucose by members of the Penicillium chrysogenum series of a pigment, an alkali-soluble protein and penicillin-the antibacterial substance of Fleming. , 1932, The Biochemical journal.

[103]  D. Jans Transport processes in penicillin biosynthesis , 2022 .