Solving hyperbolic-elliptic problems on singular mapped disk-like domains with the method of characteristics and spline finite elements

Abstract A common strategy in the numerical solution of partial differential equations is to define a uniform discretization of a tensor-product multi-dimensional logical domain, which is mapped to a physical domain through a given coordinate transformation. By extending this concept to a multi-patch setting, simple and efficient numerical algorithms can be employed on relatively complex geometries. The main drawback of such an approach is the inherent difficulty in dealing with singularities of the coordinate transformation. This work suggests a comprehensive numerical strategy for the common situation of disk-like domains with a singularity at a unique pole, where one edge of the rectangular logical domain collapses to one point of the physical domain (for example, a circle). We present robust numerical methods for the solution of Vlasov-like hyperbolic equations coupled to Poisson-like elliptic equations in such geometries. We describe a semi-Lagrangian advection solver that employs a novel set of coordinates, named pseudo-Cartesian coordinates, to integrate the characteristic equations in the whole domain, including the pole, and a finite element elliptic solver based on globally C 1 smooth splines (Toshniwal et al., 2017 [27] ). The two solvers are tested both independently and on a coupled model, namely the 2D guiding-center model for magnetized plasmas, equivalent to a vorticity model for incompressible inviscid Euler fluids. The numerical methods presented show high-order convergence in the space discretization parameters, uniformly across the computational domain, without effects of order reduction due to the singularity. Dedicated tests show that the numerical techniques described can be applied straightforwardly also in the presence of point charges (equivalently, point-like vortices), within the context of particle-in-cell methods.

[1]  Réal R. J. Gagné,et al.  A Splitting Scheme for the Numerical Solution of a One-Dimensional Vlasov Equation , 1977 .

[2]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[3]  Andrew J. Christlieb,et al.  Arbitrarily high order Convected Scheme solution of the Vlasov-Poisson system , 2013, J. Comput. Phys..

[4]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.

[5]  Nicolas Besse,et al.  Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .

[6]  Choong-Seock Chang,et al.  Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry , 2009 .

[7]  D. Schecter,et al.  Vortex crystals from 2D Euler flow: Experiment and simulation , 1999 .

[8]  R. Ganesh,et al.  Formation of quasistationary vortex and transient hole patterns through vortex merger , 2002 .

[9]  M. Sengupta,et al.  Linear and nonlinear evolution of the ion resonance instability in cylindrical traps: A numerical study , 2015 .

[10]  Virginie Grandgirard,et al.  Targeting realistic geometry in Tokamak code Gysela , 2017, 1712.02201.

[11]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[12]  Chi-Wang Shu,et al.  Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws , 2010, J. Comput. Phys..

[13]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[14]  Olivier Czarny,et al.  Bézier surfaces and finite elements for MHD simulations , 2008, J. Comput. Phys..

[15]  D. Purnell Solution of the Advective Equation by Upstream Interpolation with a Cubic Spline , 1976 .

[16]  O'Neil New theory of transport due to like-particle collisions. , 1985, Physical review letters.

[17]  J. S. Sawyer A semi-Lagrangian method of solving the vorticity advection equation , 1963 .

[18]  Hendrik Speleers,et al.  Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis , 2017 .

[19]  Dezhe Z. Jin,et al.  Vortex dynamics of 2D electron plasmas , 2002 .

[20]  A. Wiin-Nielsen,et al.  On the Application of Trajectory Methods in Numerical Forecasting , 1959 .

[21]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[22]  S. Ethier,et al.  Gyrokinetic particle-in-cell simulations of plasma microturbulence on advanced computing platforms , 2005 .

[23]  E. Süli,et al.  An introduction to numerical analysis , 2003 .

[24]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[25]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[26]  T. N. Krishnamurti,et al.  Numerical Integration of Primitive Equations by a Quasi-Lagrangian Advective Scheme , 1962 .

[27]  O'Neil,et al.  Two-dimensional guiding-center transport of a pure electron plasma. , 1988, Physical review letters.

[28]  Adrien Loseille,et al.  Tokamesh : A software for mesh generation in Tokamaks , 2018 .

[29]  R. Levy Diocotron Instability in a Cylindrical Geometry , 1965 .

[30]  Shinji Tokuda,et al.  Computation of MHD equilibrium of Tokamak Plasma , 1991 .

[31]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[32]  M. Bettencourt Controlling Self-Force for Unstructured Particle-in-Cell (PIC) Codes , 2014, IEEE Transactions on Plasma Science.

[33]  Ragnar Fjørtoft,et al.  On a Numerical Method of Integrating the Barotropic Vorticity Equation , 1952 .

[34]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[35]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[36]  R. Davidson,et al.  Physics of Nonneutral Plasmas , 1991 .

[37]  Tao Xiong,et al.  High Order Multi-dimensional Characteristics Tracing for the Incompressible Euler Equation and the Guiding-Center Vlasov Equation , 2018, J. Sci. Comput..

[38]  M. Sengupta,et al.  Inertia driven radial breathing and nonlinear relaxation in cylindrically confined pure electron plasma , 2014 .

[39]  R. Fjørtoft On the Use of Space-Smoothing in Physical Weather Forecasting , 1955 .

[40]  W. J. Gordon,et al.  B-SPLINE CURVES AND SURFACES , 1974 .

[41]  J. Manickam,et al.  Gyro-kinetic simulation of global turbulent transport properties in tokamak experiments , 2006 .

[42]  B. Scott,et al.  Global Nonlinear Electromagnetic Simulations of Tokamak Turbulence , 2010, IEEE Transactions on Plasma Science.

[43]  D. Schecter,et al.  VORTEX MOTION DRIVEN BY A BACKGROUND VORTICITY GRADIENT , 1999 .

[44]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[45]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .