暂无分享,去创建一个
[1] Réal R. J. Gagné,et al. A Splitting Scheme for the Numerical Solution of a One-Dimensional Vlasov Equation , 1977 .
[2] 高等学校計算数学学報編輯委員会編. 高等学校計算数学学報 = Numerical mathematics , 1979 .
[3] Andrew J. Christlieb,et al. Arbitrarily high order Convected Scheme solution of the Vlasov-Poisson system , 2013, J. Comput. Phys..
[4] L. Einkemmer. Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.
[5] Nicolas Besse,et al. Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .
[6] Choong-Seock Chang,et al. Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry , 2009 .
[7] D. Schecter,et al. Vortex crystals from 2D Euler flow: Experiment and simulation , 1999 .
[8] R. Ganesh,et al. Formation of quasistationary vortex and transient hole patterns through vortex merger , 2002 .
[9] M. Sengupta,et al. Linear and nonlinear evolution of the ion resonance instability in cylindrical traps: A numerical study , 2015 .
[10] Virginie Grandgirard,et al. Targeting realistic geometry in Tokamak code Gysela , 2017, 1712.02201.
[11] A. Staniforth,et al. Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .
[12] Chi-Wang Shu,et al. Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws , 2010, J. Comput. Phys..
[13] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[14] Olivier Czarny,et al. Bézier surfaces and finite elements for MHD simulations , 2008, J. Comput. Phys..
[15] D. Purnell. Solution of the Advective Equation by Upstream Interpolation with a Cubic Spline , 1976 .
[16] O'Neil. New theory of transport due to like-particle collisions. , 1985, Physical review letters.
[17] J. S. Sawyer. A semi-Lagrangian method of solving the vorticity advection equation , 1963 .
[18] Hendrik Speleers,et al. Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis , 2017 .
[19] Dezhe Z. Jin,et al. Vortex dynamics of 2D electron plasmas , 2002 .
[20] A. Wiin-Nielsen,et al. On the Application of Trajectory Methods in Numerical Forecasting , 1959 .
[21] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .
[22] S. Ethier,et al. Gyrokinetic particle-in-cell simulations of plasma microturbulence on advanced computing platforms , 2005 .
[23] E. Süli,et al. An introduction to numerical analysis , 2003 .
[24] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[25] Eric Sonnendrücker,et al. Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..
[26] T. N. Krishnamurti,et al. Numerical Integration of Primitive Equations by a Quasi-Lagrangian Advective Scheme , 1962 .
[27] O'Neil,et al. Two-dimensional guiding-center transport of a pure electron plasma. , 1988, Physical review letters.
[28] Adrien Loseille,et al. Tokamesh : A software for mesh generation in Tokamaks , 2018 .
[29] R. Levy. Diocotron Instability in a Cylindrical Geometry , 1965 .
[30] Shinji Tokuda,et al. Computation of MHD equilibrium of Tokamak Plasma , 1991 .
[31] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[32] M. Bettencourt. Controlling Self-Force for Unstructured Particle-in-Cell (PIC) Codes , 2014, IEEE Transactions on Plasma Science.
[33] Ragnar Fjørtoft,et al. On a Numerical Method of Integrating the Barotropic Vorticity Equation , 1952 .
[34] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[35] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[36] R. Davidson,et al. Physics of Nonneutral Plasmas , 1991 .
[37] Tao Xiong,et al. High Order Multi-dimensional Characteristics Tracing for the Incompressible Euler Equation and the Guiding-Center Vlasov Equation , 2018, J. Sci. Comput..
[38] M. Sengupta,et al. Inertia driven radial breathing and nonlinear relaxation in cylindrically confined pure electron plasma , 2014 .
[39] R. Fjørtoft. On the Use of Space-Smoothing in Physical Weather Forecasting , 1955 .
[40] W. J. Gordon,et al. B-SPLINE CURVES AND SURFACES , 1974 .
[41] J. Manickam,et al. Gyro-kinetic simulation of global turbulent transport properties in tokamak experiments , 2006 .
[42] B. Scott,et al. Global Nonlinear Electromagnetic Simulations of Tokamak Turbulence , 2010, IEEE Transactions on Plasma Science.
[43] D. Schecter,et al. VORTEX MOTION DRIVEN BY A BACKGROUND VORTICITY GRADIENT , 1999 .
[44] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[45] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .