Subcycling of particle orbits in variational, geometric electromagnetic particle-in-cell methods

This paper investigates subcycling of particle orbits in variational, geometric particle-in-cell methods addressing the Vlasov--Maxwell system in magnetized plasmas. The purpose of subcycling is to allow different time steps for different particle species and, ideally, time steps longer than the electron gyroperiod for the global field solves while sampling the local cyclotron orbits accurately. The considered algorithms retain the electromagnetic gauge invariance of the discrete action, guaranteeing a local charge conservation law, while the variational approach provides a bounded long-time energy behavior.

[1]  A. B. Langdon,et al.  Electron sub-cycling in particle simulation of plasma , 1982 .

[2]  Bruce I. Cohen,et al.  Orbit Averaging and Subcycling in Particle Simulation of Plasmas , 1985 .

[3]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[4]  Stefano Markidis,et al.  Multi-scale simulations of plasma with iPIC3D , 2010, Math. Comput. Simul..

[5]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[6]  Hong Qin,et al.  Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme , 2012, 1401.6723.

[7]  D. C. Barnes,et al.  A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes , 2013, J. Comput. Phys..

[8]  Luis Chacón,et al.  An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm , 2013, Comput. Phys. Commun..

[9]  Bradley Allan Shadwick,et al.  Variational formulation of macro-particle plasma simulation algorithms , 2014 .

[10]  Bradley A. Shadwick,et al.  Variational Formulation of Macroparticle Models for Electromagnetic Plasma Simulations , 2013, IEEE Transactions on Plasma Science.

[11]  Erwin Laure,et al.  The Formation of a Magnetosphere with Implicit Particle-in-Cell Simulations , 2015, ICCS.

[12]  Jianyuan Xiao,et al.  Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems , 2015, 1510.06972.

[13]  Jian Liu,et al.  2 2 M ay 2 01 5 Hamiltonian integration methods for Vlasov-Maxwell equations , 2015 .

[14]  P. Morrison,et al.  Structure and structure-preserving algorithms for plasma physics , 2016, 1612.06734.

[15]  Luis Chacón,et al.  A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions , 2016, J. Comput. Phys..

[16]  E. G. Evstatiev,et al.  Variational formulation of particle algorithms for kinetic E&M plasma simulations , 2012, 2016 IEEE International Conference on Plasma Science (ICOPS).

[17]  Jianyuan Xiao,et al.  Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems , 2016, 1606.07005.

[18]  Jian Liu,et al.  Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations , 2015, 1503.08334.

[19]  K. Kormann,et al.  GEMPIC: geometric electromagnetic particle-in-cell methods , 2016, Journal of Plasma Physics.

[20]  Jianyuan Xiao,et al.  Structure-preserving geometric particle-in-cell methods for Vlasov-Maxwell systems , 2018, Plasma Science and Technology.

[21]  Joackim Bernier,et al.  Splitting Methods for Rotations: Application to Vlasov Equations , 2020, SIAM J. Sci. Comput..

[22]  Brian J. Albright,et al.  A semi-implicit, energy- and charge-conserving particle-in-cell algorithm for the relativistic Vlasov-Maxwell equations , 2020, J. Comput. Phys..

[23]  Jianyuan Xiao,et al.  Explicit structure-preserving geometric particle-in-cell algorithm in curvilinear orthogonal coordinate systems and its applications to whole-device 6D kinetic simulations of tokamak physics , 2020, 2004.08150.

[24]  Katharina Kormann,et al.  Energy-conserving time propagation for a geometric particle-in-cell Vlasov-Maxwell solver , 2019, ArXiv.