Eco-efficient Downstream Processing of Biobutanol by Enhanced Process Intensification and Integration

The biobutanol stream obtained after the fermentation step in the acetone–butanol–ethanol process has a low concentration (less than 3 wt % butanol) that leads to high energy usage for conventional downstream separation. To overcome the high downstream processing costs, this study proposes a novel intensified separation process based on a heat pump (vapor recompression)-assisted azeotropic dividing-wall column (A-DWC). Pinch analysis and rigorous process simulations have been used for the process synthesis, design, and optimization of this novel sustainable process. Remarkably, the energy requirement for butanol separation using heat integration and vapor recompression assisted A-DWC is reduced by 58% from 6.3 to 2.7 MJ/kg butanol.