Holographic coherent states from random tensor networks

A bstractRandom tensor networks provide useful models that incorporate various important features of holographic duality. A tensor network is usually defined for a fixed graph geometry specified by the connection of tensors. In this paper, we generalize the random tensor network approach to allow quantum superposition of different spatial geometries. We setup a framework in which all possible bulk spatial geometries, characterized by weighted adjacient matrices of all possible graphs, are mapped to the boundary Hilbert space and form an overcomplete basis of the boundary. We name such an overcomplete basis as holographic coherent states. A generic boundary state can be expanded in this basis, which describes the state as a superposition of different spatial geometries in the bulk. We discuss how to define distinct classical geometries and small fluctuations around them. We show that small fluctuations around classical geometries define “code subspaces” which are mapped to the boundary Hilbert space isometrically with quantum error correction properties. In addition, we also show that the overlap between different geometries is suppressed exponentially as a function of the geometrical difference between the two geometries. The geometrical difference is measured in an area law fashion, which is a manifestation of the holographic nature of the states considered.

[1]  M. Raamsdonk,et al.  Universality of Gravity from Entanglement , 2014, 1405.2933.

[2]  C. Vafa,et al.  F-theory, GUTs, and the weak scale , 2008, 0809.1098.

[3]  P. Hayden,et al.  Holographic mutual information is monogamous , 2011, 1107.2940.

[4]  Xi Dong,et al.  Bulk locality and quantum error correction in AdS/CFT , 2014, 1411.7041.

[5]  Xi Dong The gravity dual of Rényi entropy , 2016, Nature Communications.

[6]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[7]  D. Marolf,et al.  Living on the edge: a toy model for holographic reconstruction of algebras with centers , 2016, 1611.05841.

[8]  Brian Swingle,et al.  Constructing holographic spacetimes using entanglement renormalization , 2012, 1209.3304.

[9]  Riccardo D'Auria,et al.  KK Spectroscopy of Type IIB Supergravity on $AdS_{5} \times T^{11}$ , 1999 .

[10]  Xi Dong Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories. , 2016, Physical review letters.

[11]  Doojin Kim,et al.  Dark matter “transporting” mechanism explaining positron excesses , 2017, Journal of High Energy Physics.

[12]  A. Deriglazov Poincare covariant mechanics on noncommutative space , 2002, hep-th/0211105.

[13]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[14]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[15]  Aitor Lewkowycz,et al.  Quantum corrections to holographic entanglement entropy , 2013, 1307.2892.

[16]  Zhao Yang,et al.  Bidirectional holographic codes and sub-AdS locality , 2015, 1510.03784.

[17]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[18]  D. Jafferis,et al.  Bulk reconstruction and the Hartle-Hawking wavefunction , 2017, 1703.01519.

[19]  S. Lloyd The quantum geometric limit , 2012, 1206.6559.

[20]  J. Maldacena,et al.  Eternal black holes in anti-de Sitter , 2001, hep-th/0106112.

[21]  D. Harlow The Ryu–Takayanagi Formula from Quantum Error Correction , 2016, Communications in Mathematical Physics.

[22]  Aitor Lewkowycz,et al.  Deriving covariant holographic entanglement , 2016, 1607.07506.

[23]  S. Raju,et al.  An infalling observer in AdS/CFT , 2012, 1211.6767.

[24]  M. Raamsdonk,et al.  Gravitation from entanglement in holographic CFTs , 2013, 1312.7856.

[25]  D. Minic,et al.  What is Quantum Theory of Gravity , 2004, hep-th/0401028.

[26]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[27]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[28]  Nima Lashkari,et al.  Gravitational dynamics from entanglement “thermodynamics” , 2013, 1308.3716.

[29]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[30]  James B. Hartle,et al.  Wave Function of the Universe , 1983 .

[31]  J. Polchinski,et al.  Holography from Conformal Field Theory , 2009, 0907.0151.

[32]  D Porras,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[33]  D. Harlow Aspects of the Papadodimas-Raju proposal for the black hole interior , 2014, 1405.1995.

[34]  B. Dewitt Quantum Theory of Gravity. I. The Canonical Theory , 1967 .

[35]  V. M. Ghete,et al.  Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at sNN=2.76$$ \sqrt{s_{\mathrm{N}\;\mathrm{N}}}=2.76 $$ TeV , 2016, 1609.02466.

[36]  S. El-Showk,et al.  Emergent spacetime and holographic CFTs , 2011, 1101.4163.

[37]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[38]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[39]  Xiao-Liang Qi,et al.  Exact holographic mapping and emergent space-time geometry , 2013, 1309.6282.

[40]  E. Verlinde,et al.  On the origin of gravity and the laws of Newton , 2010, 1001.0785.

[41]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[42]  Y. Nomura,et al.  Spacetime Equals Entanglement , 2016, 1607.02508.

[43]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[44]  Y. Nomura,et al.  Toward a Holographic Theory for General Spacetimes , 2016, 1611.02702.

[45]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[46]  T. Takayanagi,et al.  A covariant holographic entanglement entropy proposal , 2007, 0705.0016.

[47]  T. Jacobson Entanglement Equilibrium and the Einstein Equation. , 2015, Physical review letters.