Change of electrochemical impedance spectra during CO poisoning of the Pt and Pt–Ru anodes in a membrane fuel cell (PEFC)

Abstract The influence of carbon monoxide poisoning on the platinum and platinum–ruthenium anode in a polymer electrolyte fuel cell was investigated using electrochemical impedance spectroscopy (EIS). EIS is a very useful method for the characterisation of fuel cells. Therefore, impedance measurements of the cell under constant load were performed at periodic time intervals. Due to the poisoning effect of the carbon monoxide, the system changes its state during the experiment. The reconstruction of quasi-causal spectra was made possible using enhanced numerical procedures, especially the time course interpolation and the Z-HIT refinement. The reconstructed impedance spectra show a strong time dependence and exhibit pseudo-inductive contributions at the low-frequency part of the spectra which increase during the experiment. The analysis of the spectra suggests that the pseudo-inductive behaviour can be attributed to a surface relaxation process of the anode. Furthermore, the influence of the carbon monoxide on the electrochemical behaviour of the contaminated fuel cell may be interpreted by means of a Faraday impedance in addition to a potential-dependent hindrance of the charge transfer.

[1]  Pierre R. Roberge,et al.  Parametric modelling of the performance of a 5-kW proton-exchange membrane fuel cell stack , 1994 .

[2]  Zdravko Stoynov,et al.  Nonstationary impedance spectroscopy , 1993 .

[3]  H. Göhr,et al.  Faraday-Impedanz als Verknüpfung von Impedanzelementen , 1986 .

[4]  P. Stonehart,et al.  The Commonality of Surface Processes in Electrocatalysis and Gas-Phase Heterogeneous Catalysis , 1975 .

[5]  H. Gasteiger,et al.  Electrocatalytic Activity of PtRu Alloy Colloids for CO and CO/H2 Electrooxidation: Stripping Voltammetry and Rotating Disk Measurements , 1997 .

[6]  M. Loy,et al.  Observation of two diffusion channels in a single diffusion measurement: CO on P-contaminated Pt(111) surface , 1999 .

[7]  Koichi Kobayashi,et al.  Characterization of CO tolerance of PEMFC by ac impedance spectroscopy , 2001 .

[8]  P. Ross,et al.  Oscillatory behavior in the electrochemical oxidation of formic acid on Pt(100): rotation and temperature effects , 2001 .

[9]  A.V. Kovalyov An O , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[10]  M. Schell Mechanistic and fuel-cell implications of a tristable response in the electrochemical oxidation of methanol , 1998 .

[11]  M. Loy,et al.  On the mechanism limiting CO diffusion perpendicular to steps on Pt(111) , 1999 .

[12]  A. Aramata,et al.  Electrooxidation of methanol on platinum bonded to the solid polymer electrolyte, Nafion , 1988 .

[13]  B. Conway,et al.  ac Impedance of Faradaic reactions involving electrosorbed intermediates—I. Kinetic theory , 1987 .

[14]  V. Zhdanov Impact of surface science on the understanding of kinetics of heterogeneous catalytic reactions , 2002 .

[15]  C. Lamy,et al.  Electrochemical and spontaneous deposition of ruthenium at platinum electrodes for methanol oxidation: an electrochemical quartz crystal microbalance study , 2001 .

[16]  Xiaoming Ren,et al.  Pem fuel cells for transportation and stationary power generation applications , 1996 .

[17]  Z. Stoynov,et al.  Four-dimensional estimation of the instantaneous impedance , 1992 .

[18]  L. Schmidt,et al.  Surface diffusion of hydrogen and CO on Rh(111): Laser‐induced thermal desorption studies , 1988 .

[19]  Kinji Asaka,et al.  Bending of polyelectrolyte membrane–platinum composite by electric stimuli III: self-oscillation , 2000 .

[20]  Shimshon Gottesfeld,et al.  Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces , 2000 .

[21]  P. Ross,et al.  Electrocatalysts by design: from the tailored surface to a commercial catalyst , 2000 .

[22]  Norbert Wagner,et al.  Relaxation Impedance as a Model for the Deactivation Mechanism of Fuel Cells due to Carbon Monoxide Poisoning , 2001 .

[23]  Z. Pászti,et al.  Effect of treatments on gold nanoparticles: Relation between morphology, electron structure and catalytic activity in CO oxidation , 2002 .

[24]  L. Cornaglia,et al.  Characterization of platinum-rutheniun electrodeposits using XRD, AES and XPS analysis 1 Dedicated t , 1999 .

[25]  Zdravko Stoynov,et al.  Impedance modelling and data processing: structural and parametrical estimation , 1990 .

[26]  H. Gasteiger,et al.  PtRu Alloy Colloids as Precursors for Fuel Cell Catalysts A Combined XPS, AFM, HRTEM, and RDE Study , 1998 .

[27]  M. Schell,et al.  Enhancement of the electrochemical oxidation of formic acid. Effects of anion adsorption and variation of rotation rate , 2001 .

[28]  M. Pagitsas,et al.  Current oscillations induced by chlorides during the passive–active transition of iron in a sulfuric acid solution , 1999 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  P. Ross,et al.  Structural effects during CO adsorption on Pt–bimetallic surfaces , 2000 .

[31]  P. Stonehart,et al.  Reaction pathways and poisons—II: The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO , 1975 .

[32]  Rossella Giorgi,et al.  H2 and H2/CO oxidation mechanism on Pt/C, Ru/C and Pt–Ru/C electrocatalysts , 2001 .

[33]  J. Garche,et al.  The effect of metal oxides as co-catalysts for the electro-oxidation of methanol on platinum-ruthenium , 1999 .

[34]  T. J. Curtiss,et al.  Temperature-programmed desorption studies of the interactions of OD and CO with Pt(111) , 2000 .

[35]  Helmut Baltruschat,et al.  Methanol oxidation on Pt, PtRu, and colloidal Pt electrocatalysts: a DEMS study of product formation , 2001 .

[36]  Christopher E. Borroni-Bird,et al.  Fuel cell commercialization issues for light-duty vehicle applications , 1996 .

[37]  P. Ross,et al.  Potential oscillations and S-shaped polarization curve in the continuous electro-oxidation of CO on platinum single-crystal electrodes , 2001 .

[38]  H. Gasteiger,et al.  Characterization of High‐Surface‐Area Electrocatalysts Using a Rotating Disk Electrode Configuration , 1998 .

[39]  H. Tributsch,et al.  Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3(CO)12 , 2001 .

[40]  A. Eichler CO oxidation on transition metal surfaces: reaction rates from first principles , 2002 .

[41]  M. Eiswirth,et al.  Mechanistic classification of electrochemical oscillators — an operational experimental strategy , 1999 .

[42]  Masahiro Watanabe,et al.  Direct methanol oxidation on platinum electrodes with ruthenium adatoms in hot phosphoric acid , 1997 .

[43]  Volkmar M. Schmidt,et al.  Performance Data of a Proton Exchange Membrane Fuel Cell Using H 2 / CO as Fuel Gas , 1996 .

[44]  Antonino S. Aricò,et al.  Influence of flow field design on the performance of a direct methanol fuel cell , 2000 .

[45]  M. Maple,et al.  Model discrimination in oscillatory CO oxidation on platinum catalysts at atmospheric pressure , 2000 .

[46]  G. Ertl,et al.  On the origin of oscillations in the electrocatalytic oxidation of HCOOH on a Pt electrode modified by Bi deposition , 2001 .

[47]  C. Korzeniewski,et al.  Effects of thermal activation on the oxidation pathways of methanol at bulk Pt–Ru alloy electrodes , 2001 .

[48]  K. Friedrich,et al.  Size dependence of the CO monolayer oxidation on nanosized Pt particles supported on gold , 2000 .

[49]  Koichi Kobayashi,et al.  Effect of CO gas and anode-metal loading on H2 oxidation in proton exchange membrane fuel cell , 2001 .

[50]  R. Hoffmann,et al.  A molecular orbital study of surface–adsorbate interactions during the oxidation of CO on the Pt(111) surface , 2001 .

[51]  G. Samjeské,et al.  Ru Decoration of Stepped Pt Single Crystals and the Role of the Terrace Width on the Electrocatalytic CO Oxidation , 2002 .

[52]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[53]  K. Krischer,et al.  Nonlinear phenomena during electrochemical oxidation of hydrogen on platinum electrodes , 2001 .

[54]  H. Bönnemann,et al.  Erzeugung von kolloiden Übergangsmetallen in organischer Phase und ihre Anwendung in der Katalyse , 1991 .

[55]  Yukihiko Matsumura,et al.  Electrochemical Oxidation of Carbon Monoxide, Methanol, Formic Acid, Ethanol, and Acetic Acid on a Platinum Electrode under Hot Aqueous Conditions , 2002 .

[56]  H. Göhr Über Beiträge einzelner Elektrodenprozesse zur Impedanz , 1981 .

[57]  Peter Urban,et al.  Impedance studies on direct methanol fuel cell anodes , 1999 .

[58]  Norbert Wagner,et al.  Validation and evaluation of electrochemical impedance spectra of systems with states that change with time , 2001 .

[59]  N. Wagner Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy , 2002 .

[60]  M. Pagitsas,et al.  Complex periodic and chaotic current oscillations related to different states of the localized corrosion of iron in chloride-containing sulfuric acid solutions , 2000 .

[61]  C. Sánchez-Sánchez,et al.  Influence of Pb2+ ions in the H2 oxidation on Pt catalyzed hydrogen diffusion anodes in sulfuric acid: presence of oscillatory phenomena , 2002 .