Model predictive control of gantry/bridge crane with anti-sway algorithm

This paper presents MPC (Model predictive control) controller, which provides fast transfer of cargo with sway reduction. The solution for criterion function of MPC controller was reached through multicriteria optimization. Intuitive adjustment of crane dynamics system is done by means of multicriteria optimization weights. The mathematical model of crane, which MPC controller is using to determine optimum control, is introduced and it takes into account the hoisting dynamics of cargo. Experimentally confirmed is the MPC controller on a bridge crane laboratory scale model and compared with the classical control system, which uses PD (Proportional and derivative) controller to control the position and prevent swaying.

[1]  Q. H. Ngo,et al.  Sliding-Mode Antisway Control of an Offshore Container Crane , 2012, IEEE/ASME Transactions on Mechatronics.

[2]  Andrea Serrani,et al.  Offshore crane control based on adaptive external models , 2008, 2008 American Control Conference.

[3]  K. Hong,et al.  A Feedback Linearization Control of Container Cranes: Varying Rope Length , 2007 .

[4]  Keum-Shik Hong,et al.  Dynamics of the container crane on a mobile harbor , 2012 .

[5]  Lucy Y. Pao,et al.  Input shaping and time-optimal control of flexible structures , 2003, Autom..

[6]  Jan Swevers,et al.  A model predictive control approach for time optimal point-to-point motion control , 2011 .

[7]  William E. Singhose,et al.  Command-induced vibration analysis using input shaping principles , 2008, Autom..

[8]  Hyun Cheol Cho,et al.  Adaptive control and stability analysis of nonlinear crane systems with perturbation , 2008 .

[9]  Le Anh Tuan,et al.  Adaptive sliding mode control of overhead cranes with varying cable length , 2013 .

[10]  Thomas Gustafsson,et al.  Automatic control of unmanned cranes at the Pasir Panjang terminal , 2002, Proceedings of the International Conference on Control Applications.

[11]  Ahmed Z. Al-Garni,et al.  Optimal control of overhead cranes , 1995 .

[12]  Jianqiang Yi,et al.  Adaptive sliding mode fuzzy control for a two-dimensional overhead crane , 2005 .

[13]  Keum-Shik Hong,et al.  Adaptive sliding mode control of container cranes , 2012 .

[14]  William Singhose,et al.  Performance studies of human operators driving double-pendulum bridge cranes , 2010 .

[15]  Hideki Kawai,et al.  Anti-sway system with image sensor for container cranes , 2009 .

[16]  Yoshiyuki Sakawa,et al.  Optimal control of container cranes , 1981, Autom..

[17]  Tongwen Chen,et al.  Adaptive output feedback control of general MIMO systems using multirate sampling and its application to a cart-crane system , 2007, Autom..

[18]  H. Troger,et al.  Time optimal control of overhead cranes with hoisting of the load , 1987, Autom..

[19]  Jin-Ho Suh,et al.  Anti-sway position control of an automated transfer crane based on neural network predictive PID controller , 2005 .

[20]  Harald Aschemann,et al.  Fast Nonlinear MPC for an Overhead Travelling Crane , 2011 .

[21]  Naif B. Almutairi,et al.  Sliding Mode Control of a Three-dimensional Overhead Crane , 2009 .

[22]  Oliver Sawodny,et al.  Tracking and anti-sway control for boom cranes , 2010 .

[23]  C. Ong,et al.  Minimum-Time Control of a Crane with Simultaneous Traverse and Hoisting Motions , 2004 .

[24]  Ali H. Nayfeh,et al.  Gantry cranes gain scheduling feedback control with friction compensation , 2005 .

[25]  Keum-Shik Hong,et al.  Skew control of a quay container crane , 2009 .

[26]  Wen Yu,et al.  Stable adaptive compensation with fuzzy CMAC for an overhead crane , 2011, Inf. Sci..

[27]  Ken'ichi Yano,et al.  Modeling and optimal control of a rotary crane using the straight transfer transformation method , 2007 .

[28]  Ton J. J. van den Boom,et al.  Real-time time-optimal control for a nonlinear container crane using a neural network , 2005, ICINCO.