Neural Circuit Motifs in Valence Processing

How do our brains determine whether something is good or bad? How is this computational goal implemented in biological systems? Given the critical importance of valence processing for survival, the brain has evolved multiple strategies to solve this problem at different levels. The psychological concept of "emotional valence" is now beginning to find grounding in neuroscience. This review aims to bridge the gap between psychology and neuroscience on the topic of emotional valence processing. Here, I highlight a subset of studies that exemplify circuit motifs that repeatedly appear as implementational systems in valence processing. The motifs I identify as being important in valence processing include (1) Labeled Lines, (2) Divergent Paths, (3) Opposing Components, and (4) Neuromodulatory Gain. Importantly, the functionality of neural substrates in valence processing is dynamic, context-dependent, and changing across short and long timescales due to synaptic plasticity, competing mechanisms, and homeostatic need.

[1]  K. Tye,et al.  Acute Food Deprivation Rapidly Modifies Valence-Coding Microcircuits in the Amygdala , 2018, bioRxiv.

[2]  Joseph E LeDoux,et al.  Why We Think Plasticity Underlying Pavlovian Fear Conditioning Occurs in the Basolateral Amygdala , 1999, Neuron.

[3]  J. Palacios,et al.  Neurotensin receptors are located on dopamine-containing neurones in rat midbrain , 1981, Nature.

[4]  C. Darwin,et al.  The Expression of the Emotions in Man and Animals , 1956 .

[5]  K. Tye Neural Circuit Reprogramming: A New Paradigm for Treating Neuropsychiatric Disease? , 2014, Neuron.

[6]  J. McCall,et al.  CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety , 2015, Neuron.

[7]  V. Arango,et al.  Serotonin brain circuits involved in major depression and suicide. , 2002, Progress in brain research.

[8]  K. Berridge,et al.  Positive and Negative Motivation in Nucleus Accumbens Shell: Bivalent Rostrocaudal Gradients for GABA-Elicited Eating, Taste “Liking”/“Disliking” Reactions, Place Preference/Avoidance, and Fear , 2002, The Journal of Neuroscience.

[9]  Edward H. Nieh,et al.  Inhibitory Input from the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation , 2016, Neuron.

[10]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[11]  Kay M. Tye,et al.  Rapid strengthening of thalamo-amygdala synapses mediates cue–reward learning , 2008, Nature.

[12]  Albert Bandura,et al.  Observational learning as a function of symbolization and incentive set. , 1966 .

[13]  Stephen P. Boyd,et al.  Fast linear iterations for distributed averaging , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[14]  Kevin N. Ochsner,et al.  The Neural Bases of Distraction and Reappraisal , 2010, Journal of Cognitive Neuroscience.

[15]  G. Quirk,et al.  Neuronal signalling of fear memory , 2004, Nature Reviews Neuroscience.

[16]  E. Rolls,et al.  Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food , 1976, Experimental Neurology.

[17]  A. Flaherty,et al.  Input-output organization of the sensorimotor striatum in the squirrel monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  I. Lucki,et al.  The spectrum of behaviors influenced by serotonin , 1998, Biological Psychiatry.

[19]  Stephen Maren Synaptic Mechanisms of Associative Memory in the Amygdala , 2005, Neuron.

[20]  K. Tye,et al.  Methylphenidate facilitates learning-induced amygdala plasticity , 2010, Nature Neuroscience.

[21]  Joseph E LeDoux Emotion: clues from the brain. , 1995, Annual review of psychology.

[22]  Ilana B. Witten,et al.  Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement , 2011, Neuron.

[23]  K. Tye,et al.  Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex , 2016, Neuroscience.

[24]  C. Berridge,et al.  The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes , 2003, Brain Research Reviews.

[25]  A. Kelley,et al.  Ventral tegmental area infusion of substance P, neurotensin and enkephalin: Differential effects on feeding behavior , 1986, Neuroscience.

[26]  C. Salzman,et al.  Abstract Context Representations in Primate Amygdala and Prefrontal Cortex , 2015, Neuron.

[27]  A. Bandura,et al.  Developmental psychology : Bandura , Ross and Ross ( 1961 ) Transmission of aggression through imitation of aggressive models , 2015 .

[28]  S. Foote,et al.  Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus , 1983, Brain Research.

[29]  Evelien H. S. Schut,et al.  Acute stress induces long-lasting alterations in the dopaminergic system of female mice , 2017, bioRxiv.

[30]  Raag D. Airan,et al.  Natural Neural Projection Dynamics Underlying Social Behavior , 2014, Cell.

[31]  M. Washburn,et al.  Bodily Changes in Pain, Hunger, Fear, and Rage. , 1917 .

[32]  K. Deisseroth,et al.  Tuning arousal with optogenetic modulation of locus coeruleus neurons , 2010, Nature Neuroscience.

[33]  G. Stuber,et al.  Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior , 2017, eLife.

[34]  S. Tonegawa,et al.  Bidirectional switch of the valence associated with a hippocampal contextual memory engram , 2014, Nature.

[35]  P. Schyns,et al.  A mechanism for impaired fear recognition after amygdala damage , 2005, Nature.

[36]  Charles D. Kopec,et al.  Experience-dependent modification of a central amygdala fear circuit , 2013, Nature Neuroscience.

[37]  R. Malenka,et al.  PARALLEL CIRCUITS FROM THE BED NUCLEI OF STRIA TERMINALIS TO THE LATERAL HYPOTHALAMUS DRIVE OPPOSING EMOTIONAL STATES , 2018, Nature Neuroscience.

[38]  E. Ellinwood,et al.  Cocaine and Other Stimulants , 2012 .

[39]  C. Bourque,et al.  The neural basis of homeostatic and anticipatory thirst , 2018, Nature Reviews Nephrology.

[40]  K. Deisseroth,et al.  Rapid regulation of depression-related behaviors by control of midbrain dopamine neurons , 2012, Nature.

[41]  N. Canteras,et al.  Integrated Control of Predatory Hunting by the Central Nucleus of the Amygdala , 2017, Cell.

[42]  Kristen A. Lindquist,et al.  Feeling Hangry? When Hunger Is Conceptualized as Emotion , 2019, Emotion.

[43]  S. Corkin,et al.  Two routes to emotional memory: distinct neural processes for valence and arousal. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Justin S. Feinstein,et al.  Fear and panic in humans with bilateral amygdala damage , 2013, Nature Neuroscience.

[45]  M. McKERNAN,et al.  Fear conditioning induces a lasting potentiation of synaptic currents in vitro , 1997, Nature.

[46]  P. Lang The varieties of emotional experience: a meditation on James-Lange theory. , 1994, Psychological review.

[47]  S. Danziger,et al.  Extraneous factors in judicial decisions , 2011, Proceedings of the National Academy of Sciences.

[48]  W. Cannon The James-Lange theory of emotions: a critical examination and an alternative theory. By Walter B. Cannon, 1927. , 1927, The American journal of psychology.

[49]  R. Rescorla A theory of pavlovian conditioning: The effectiveness of reinforcement and non-reinforcement , 1972 .

[50]  H. Pape,et al.  µ-opioid receptor-mediated downregulation of midline thalamic pathways to basal and central amygdala , 2019, Scientific Reports.

[51]  Joseph E LeDoux,et al.  Why We Think Plasticity Underlying Viewpoint Pavlovian Fear Conditioning Occurs in the Basolateral Amygdala , 1999 .

[52]  A. Arnsten Stress signalling pathways that impair prefrontal cortex structure and function , 2009, Nature Reviews Neuroscience.

[53]  Joseph E LeDoux,et al.  New vistas on amygdala networks in conditioned fear. , 2004, Journal of neurophysiology.

[54]  Hailan Hu Reward and Aversion. , 2016, Annual review of neuroscience.

[55]  R. Naik Ramesh,et al.  Homeostatic circuits selectively gate food cue responses in insular cortex , 2017, Nature.

[56]  Kyle S. Smith,et al.  Optogenetic Inhibition of Ventral Pallidum Neurons Impairs Context-Driven Salt Seeking , 2017, The Journal of Neuroscience.

[57]  Barbara E. Jones,et al.  Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat , 1977, Brain Research.

[58]  Anatol C. Kreitzer,et al.  Distinct roles for direct and indirect pathway striatal neurons in reinforcement , 2012, Nature Neuroscience.

[59]  David J. Anderson,et al.  A Framework for Studying Emotions across Species , 2014, Cell.

[60]  R. Wightman,et al.  Subsecond dopamine release promotes cocaine seeking , 2003, Nature.

[61]  R. Wise Dopamine, learning and motivation , 2004, Nature Reviews Neuroscience.

[62]  A. Elliot The Hierarchical Model of Approach-Avoidance Motivation , 2006 .

[63]  James H. Marshel,et al.  Diverging neural pathways assemble a behavioural state from separable features in anxiety , 2013, Nature.

[64]  C. Sánchez,et al.  Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression , 1997, Psychopharmacology.

[65]  K. Tye,et al.  BLA to vHPC Inputs Modulate Anxiety-Related Behaviors , 2013, Neuron.

[66]  Praneeth Namburi,et al.  Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval , 2016, Neuron.

[67]  Kelly R. Tan,et al.  GABA Neurons of the VTA Drive Conditioned Place Aversion , 2012, Neuron.

[68]  R. Huganir,et al.  Calcium-Permeable AMPA Receptor Dynamics Mediate Fear Memory Erasure , 2010, Science.

[69]  Ralph Adolphs,et al.  Fear and the human amygdala , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[71]  Y. Shaham,et al.  Role of Nucleus Accumbens Shell Neuronal Ensembles in Context-Induced Reinstatement of Cocaine-Seeking , 2014, The Journal of Neuroscience.

[72]  Hailan Hu,et al.  Visualizing an emotional valence map in the limbic forebrain by TAI-FISH , 2014, Nature Neuroscience.

[73]  Karl Deisseroth,et al.  Midbrain circuits for defensive behaviour , 2016, Nature.

[74]  Andreas Lüthi,et al.  A competitive inhibitory circuit for selection of active and passive fear responses , 2017, Nature.

[75]  E. Ellinwood,et al.  Cocaine and other stimulants. Actions, abuse, and treatment. , 1988, The New England journal of medicine.

[76]  S. Hyman,et al.  Acute Effects of Cocaine on Human Brain Activity and Emotion , 1997, Neuron.

[77]  R Saxe,et al.  People thinking about thinking people The role of the temporo-parietal junction in “theory of mind” , 2003, NeuroImage.

[78]  Y. Humeau,et al.  Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition , 2003, Nature Neuroscience.

[79]  Carolyn E. Jones,et al.  Fear conditioning by-proxy: Social transmission of fear during memory retrieval , 2010, Behavioural Brain Research.

[80]  Vikaas S Sohal,et al.  Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies , 2017, The Journal of Neuroscience.

[81]  A. Grace,et al.  The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[82]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[83]  Leah H. Somerville,et al.  A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues , 2010, Brain and Cognition.

[84]  M. Kavaliers,et al.  Learning from others to cope with biting flies: social learning of fear-induced conditioned analgesia and active avoidance. , 2001, Behavioral neuroscience.

[85]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[86]  Edward H. Nieh,et al.  Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment , 2017, Nature Neuroscience.

[87]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[88]  D. Dutton,et al.  Some evidence for heightened sexual attraction under conditions of high anxiety. , 1974, Journal of personality and social psychology.

[89]  W. Cannon The James-Lange theory of emotions: a critical examination and an alternative theory. By Walter B. Cannon, 1927. , 1927, American Journal of Psychology.

[90]  David J. Anderson,et al.  The Neuroscience of Emotion: A New Synthesis , 2018 .

[91]  S. Lammel,et al.  Progress in understanding mood disorders: optogenetic dissection of neural circuits , 2014, Genes, brain, and behavior.

[92]  David J. Anderson,et al.  Genetic dissection of an amygdala microcircuit that gates conditioned fear , 2010, Nature.

[93]  Josselyn Sheena,et al.  Selective erasure of a fear memory , 2009 .

[94]  A. Grace,et al.  Aversive Stimuli Alter Ventral Tegmental Area Dopamine Neuron Activity via a Common Action in the Ventral Hippocampus , 2011, The Journal of Neuroscience.

[95]  Greg D. Gale,et al.  The Amygdala, Fear, and Memory , 2003, Annals of the New York Academy of Sciences.

[96]  Lief E. Fenno,et al.  Amygdala circuitry mediating reversible and bidirectional control of anxiety , 2011, Nature.

[97]  Sanger Brown,et al.  An Investigation into the Functions of the Occipital and Temporal Lobes of the Monkey's Brain , 1888 .

[98]  A. Grace,et al.  Chronic Cold Stress Reduces the Spontaneous Activity of Ventral Tegmental Dopamine Neurons , 2001, Neuropsychopharmacology.

[99]  Joseph E LeDoux,et al.  Human Amygdala Activation during Conditioned Fear Acquisition and Extinction: a Mixed-Trial fMRI Study , 1998, Neuron.

[100]  A. Lüthi,et al.  New perspectives on central amygdala function , 2018, Current Opinion in Neurobiology.

[101]  G. Koob Drugs of abuse: anatomy, pharmacology and function of reward pathways. , 1992, Trends in pharmacological sciences.

[102]  M. Fanselow,et al.  The Danger of LeDoux and Pine's Two-System Framework for Fear. , 2017, The American journal of psychiatry.

[103]  P. Glimcher,et al.  Neurotensin self-injection in the ventral tegmental area , 1987, Brain Research.

[104]  Stephen Maren Neurobiology of Pavlovian fear conditioning. , 2001, Annual review of neuroscience.

[105]  Xiao-Jing Wang,et al.  The importance of mixed selectivity in complex cognitive tasks , 2013, Nature.

[106]  S. Schachter,et al.  Epinephrine, chlorpromazine, and amusement. , 1962, Journal of abnormal and social psychology.

[107]  Patricia H. Janak,et al.  Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal , 2009, Proceedings of the National Academy of Sciences.

[108]  Stephen A. Allsop,et al.  Decoding Neural Circuits that Control Compulsive Sucrose Seeking Graphical , 2019 .

[109]  C. Darwin The Expression of the Emotions in Man and Animals , .

[110]  Joseph J. Paton,et al.  The primate amygdala represents the positive and negative value of visual stimuli during learning , 2006, Nature.

[111]  A Bandura,et al.  Social learning theory of aggression. , 1978, The Journal of communication.

[112]  A. Phillips,et al.  A top-down perspective on dopamine, motivation and memory , 2008, Pharmacology Biochemistry and Behavior.

[113]  David A. Morilak,et al.  Role of brain norepinephrine in the behavioral response to stress , 2005, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[114]  A. Young,et al.  Recognition of facial emotion in nine individuals with bilateral amygdala damage , 1999, Neuropsychologia.

[115]  Yen-Chu Lin,et al.  Sensory Detection of Food Rapidly Modulates Arcuate Feeding Circuits , 2015, Cell.

[116]  Kyle S. Smith,et al.  Ventral pallidum firing codes hedonic reward: when a bad taste turns good. , 2006, Journal of neurophysiology.

[117]  A. Grace,et al.  Amygdala-Ventral Pallidum Pathway Decreases Dopamine Activity After Chronic Mild Stress in Rats , 2014, Biological Psychiatry.

[118]  Alice M Stamatakis,et al.  Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. , 2011, Nature.

[119]  R. Adolphs,et al.  Normal recognition of emotional similarity between facial expressions following bilateral amygdala damage , 1999, Neuropsychologia.

[120]  Elyssa B. Margolis,et al.  Ventral tegmental area: cellular heterogeneity, connectivity and behaviour , 2017, Nature Reviews Neuroscience.

[121]  R. Wise Drug-activation of brain reward pathways. , 1998, Drug and alcohol dependence.

[122]  James L Olds,et al.  Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. , 1954, Journal of comparative and physiological psychology.

[123]  Cyril Herry,et al.  Encoding of fear learning and memory in distributed neuronal circuits , 2014, Nature Neuroscience.

[124]  W. Cannon The Wisdom of the Body , 1932 .

[125]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[126]  R. Lazarus Progress on a cognitive-motivational-relational theory of emotion. , 1991, The American psychologist.

[127]  R. Solomon The opponent-process theory of acquired motivation: the costs of pleasure and the benefits of pain. , 1980, The American psychologist.

[128]  K. Wada,et al.  Heightened Amygdala Long-Term Potentiation in Neurotensin Receptor Type-1 Knockout Mice , 2008, Neuropsychopharmacology.

[129]  S. Tonegawa,et al.  Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors , 2017, Neuron.

[130]  P. Ekman,et al.  The nature of emotion: Fundamental questions. , 1994 .

[131]  J. Fuster,et al.  Reactivity of limbic neurons of the monkey to appetitive and aversive signals. , 1971, Electroencephalography and clinical neurophysiology.

[132]  Antoine Adamantidis,et al.  Functional wiring of hypocretin and LC-NE neurons: implications for arousal , 2013, Front. Behav. Neurosci..

[133]  K. Tye,et al.  Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala , 2018, Cell reports.

[134]  R. Wurtman,et al.  Brain Serotonin, Carbohydrate-craving, obesity and depression. , 1996, Advances in experimental medicine and biology.

[135]  Ethan S. Bromberg-Martin,et al.  Lateral habenula neurons signal errors in the prediction of reward information , 2011, Nature Neuroscience.

[136]  D. F. Albeanu,et al.  Central Amygdala Somatostatin Neurons Gate Passive and Active Defensive Behaviors , 2016, The Journal of Neuroscience.

[137]  R. Wise,et al.  Feeding and Reward Are Differentially Induced by Activating GABAergic Lateral Hypothalamic Projections to VTA , 2016, The Journal of Neuroscience.

[138]  Jason Tucciarone,et al.  The paraventricular thalamus controls a central amygdala fear circuit , 2014, Nature.

[139]  J. Panksepp Affective Neuroscience: The Foundations of Human and Animal Emotions , 1998 .

[140]  Demba E. Ba,et al.  Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning , 2018, Cell.

[141]  Alice M Stamatakis,et al.  Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Regulate Feeding and Reward , 2016, The Journal of Neuroscience.

[142]  Michael B. Stadler,et al.  Encoding of conditioned fear in central amygdala inhibitory circuits , 2010, Nature.

[143]  K. Fuxe,et al.  Neurotensin receptors as modulators of glutamatergic transmission , 2008, Brain Research Reviews.

[144]  Michael Davis,et al.  The role of the amygdala in fear and anxiety. , 1992, Annual review of neuroscience.

[145]  Gregory J. Quirk,et al.  Thalamic Regulation of Sucrose Seeking during Unexpected Reward Omission , 2017, Neuron.

[146]  A. Elliot,et al.  Approach and Avoidance Motivation , 2001 .

[147]  D. Paré,et al.  Amygdala Microcircuits Controlling Learned Fear , 2014, Neuron.

[148]  Joseph E LeDoux,et al.  Fear conditioning induces associative long-term potentiation in the amygdala , 1997, Nature.

[149]  R. Rescorla Predictability and number of pairings in Pavlovian fear conditioning , 1966 .

[150]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[151]  H. Klüver,et al.  "Psychic blindness" and other symptoms following bilateral temporal lobectomy in Rhesus monkeys. , 1937 .

[152]  T. Hare,et al.  The Adolescent Brain , 2008, Annals of the New York Academy of Sciences.

[153]  Joseph E. LeDoux,et al.  Semantics, Surplus Meaning, and the Science of Fear , 2017, Trends in Cognitive Sciences.

[154]  C. Nemeroff,et al.  Neurotensin and dopamine interactions. , 2001, Pharmacological reviews.

[155]  P. Goldman-Rakic The cortical dopamine system: role in memory and cognition. , 1998, Advances in pharmacology.

[156]  B. Babkin Conditioned Reflexes; an Investigation of the Physiological Activity of the Cerebral Cortex. , 1929 .

[157]  W. Cannon ORGANIZATION FOR PHYSIOLOGICAL HOMEOSTASIS , 1929 .

[158]  T. Robbins,et al.  Neural systems of reinforcement for drug addiction: from actions to habits to compulsion , 2005, Nature Neuroscience.

[159]  M. Sokolowski,et al.  Social Interactions in “Simple” Model Systems , 2010, Neuron.

[160]  S. Lammel,et al.  Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations , 2018, Neuron.

[161]  Gene E. Robinson,et al.  Epigenetics and the evolution of instincts , 2017, Science.

[162]  Minmin Luo,et al.  Hypothalamic Circuits for Predation and Evasion , 2018, Neuron.

[163]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[164]  M. Cabanac What is emotion? , 2002, Behavioural Processes.

[165]  H. Ruley,et al.  Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC , 2010, Nature Neuroscience.

[166]  Yueqing Peng,et al.  The coding of valence and identity in the mammalian taste system , 2018, Nature.

[167]  P. Kalivas,et al.  Brain circuitry and the reinstatement of cocaine-seeking behavior , 2003, Psychopharmacology.

[168]  P. Ekman An argument for basic emotions , 1992 .

[169]  K. Deisseroth,et al.  Optogenetic investigation of neural circuits underlying brain disease in animal models , 2012, Nature Reviews Neuroscience.

[170]  Rebecca Saxe,et al.  Empathic control through coordinated interaction of amygdala, theory of mind and extended pain matrix brain regions , 2015, NeuroImage.

[171]  R. Shansky,et al.  Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex , 2013, Front. Hum. Neurosci..

[172]  Raphael Cohn,et al.  Coordinated and Compartmentalized Neuromodulation Shapes Sensory Processing in Drosophila , 2015, Cell.

[173]  Alice M Stamatakis,et al.  Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance , 2012, Nature Neuroscience.

[174]  P. Glimcher,et al.  Neurotensin: A new ‘reward peptide’ , 1984, Brain Research.

[175]  A. Caspi,et al.  Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene , 2003, Science.

[176]  Karl Deisseroth,et al.  Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors , 2015, Cell.

[177]  J. Pillow,et al.  Combined social and spatial coding in a descending projection from the prefrontal cortex , 2017, bioRxiv.

[178]  James M. Otis,et al.  Prefrontal cortex output circuits guide reward seeking through divergent cue encoding , 2017, Nature.

[179]  Alice M Stamatakis,et al.  The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding , 2013, Science.

[180]  Joseph E LeDoux,et al.  Using Neuroscience to Help Understand Fear and Anxiety: A Two-System Framework. , 2016, The American journal of psychiatry.

[181]  K. Deisseroth,et al.  Hypothalamic Neurotensin Projections Promote Reward by Enhancing Glutamate Transmission in the VTA , 2013, The Journal of Neuroscience.

[182]  K. Berridge,et al.  Glutamate motivational ensembles in nucleus accumbens: rostrocaudal shell gradients of fear and feeding , 2003, The European journal of neuroscience.

[183]  E. Abercrombie,et al.  Differential Effect of Stress on In Vivo Dopamine Release in Striatum, Nucleus Accumbens, and Medial Frontal Cortex , 1989, Journal of neurochemistry.

[184]  S. Mineka,et al.  Observational conditioning of snake fear in rhesus monkeys. , 1984, Journal of abnormal psychology.

[185]  C. Nemeroff,et al.  Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. , 1994, Clinical chemistry.

[186]  P. Lang The emotion probe. Studies of motivation and attention. , 1995, The American psychologist.

[187]  L. Weiskrantz,et al.  Behavioral changes associated with ablation of the amygdaloid complex in monkeys. , 1956, Journal of comparative and physiological psychology.

[188]  Yiming Chen,et al.  Thirst neurons anticipate the homeostatic consequences of eating and drinking , 2016, Nature.

[189]  J. Panksepp Affective consciousness: Core emotional feelings in animals and humans , 2005, Consciousness and Cognition.

[190]  R. Wise,et al.  Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens , 2012, Neuron.

[191]  A. Arnsten,et al.  Catecholamine regulation of the prefrontal cortex , 1997, Journal of psychopharmacology.

[192]  Katie C. Bittner,et al.  Behavioral time scale synaptic plasticity underlies CA1 place fields , 2017, Science.

[193]  Jackson J. Cone,et al.  Amygdala Neural Encoding of the Absence of Reward during Extinction , 2010, The Journal of Neuroscience.

[194]  David E. Osher,et al.  Structural Connectivity of the Developing Human Amygdala , 2015, PloS one.

[195]  Aaron S. Andalman,et al.  Dopamine neurons modulate neural encoding and expression of depression-related behaviour , 2012, Nature.

[196]  Nicole A. Crowley,et al.  Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward , 2015, Neuron.

[197]  K. Tye,et al.  From circuits to behaviour in the amygdala , 2015, Nature.

[198]  Edmund C Schwartz,et al.  Neural Representations of Unconditioned Stimuli in Basolateral Amygdala Mediate Innate and Learned Responses , 2015, Cell.

[199]  J. Russell A circumplex model of affect. , 1980 .

[200]  K. Berridge Pleasure, pain, desire, and dread: Hidden core processes of emotion. , 1999 .

[201]  I. Amit,et al.  Salient experiences are represented by unique transcriptional signatures in the mouse brain , 2018, eLife.

[202]  Y. Humeau,et al.  Amygdala Inhibitory Circuits and the Control of Fear Memory , 2009, Neuron.

[203]  W. James,et al.  The Principles of Psychology. , 1983 .

[204]  K. Tye,et al.  Architectural Representation of Valence in the Limbic System , 2016, Neuropsychopharmacology.

[205]  Drew B. Headley,et al.  Amygdala Signaling during Foraging in a Hazardous Environment , 2015, The Journal of Neuroscience.

[206]  G. Aston-Jones,et al.  Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[207]  Joseph E LeDoux,et al.  Postsynaptic Receptor Trafficking Underlying a Form of Associative Learning , 2005, Science.

[208]  J. Betley,et al.  Parallel, Redundant Circuit Organization for Homeostatic Control of Feeding Behavior , 2013, Cell.

[209]  M. Penzo,et al.  Fear Conditioning Potentiates Synaptic Transmission onto Long-Range Projection Neurons in the Lateral Subdivision of Central Amygdala , 2014, The Journal of Neuroscience.

[210]  G. Stuber,et al.  Activation of VTA GABA Neurons Disrupts Reward Consumption , 2012, Neuron.

[211]  J. Singer,et al.  Cognitive, social, and physiological determinants of emotional state. , 1962, Psychological review.

[212]  J. Gabrieli,et al.  Rethinking Feelings: An fMRI Study of the Cognitive Regulation of Emotion , 2002, Journal of Cognitive Neuroscience.

[213]  R. Naik Ramesh,et al.  Hunger-Dependent Enhancement of Food Cue Responses in Mouse Postrhinal Cortex and Lateral Amygdala , 2016, Neuron.

[214]  A. Graybiel,et al.  A Corticostriatal Path Targeting Striosomes Controls Decision-Making under Conflict , 2015, Cell.

[215]  K. Deisseroth,et al.  Manipulating a “Cocaine Engram” in Mice , 2014, The Journal of Neuroscience.

[216]  Jeremiah Y. Cohen,et al.  Distributed and Mixed Information in Monosynaptic Inputs to Dopamine Neurons , 2016, Neuron.

[217]  S. Cabib,et al.  Stress, depression and the mesolimbic dopamine system , 1996, Psychopharmacology.

[218]  S. Lammel,et al.  Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli , 2011, Neuron.

[219]  Stefano Fusi,et al.  Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. , 2010, Annual review of neuroscience.

[220]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[221]  Praneeth Namburi,et al.  Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli , 2018, Nature.

[222]  J. E. Rose,et al.  Autonomic Nervous System Activity Distinguishes Among Emotions , 2009 .

[223]  Andreas Olsson,et al.  Learning fears by observing others: the neural systems of social fear transmission. , 2007, Social cognitive and affective neuroscience.

[224]  D. H. Root,et al.  Role of Glutamatergic Projections from Ventral Tegmental Area to Lateral Habenula in Aversive Conditioning , 2014, The Journal of Neuroscience.

[225]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[226]  S. Tonegawa,et al.  Activating positive memory engrams suppresses depression-like behaviour , 2015, Nature.

[227]  Patricia H. Janak,et al.  Context-Induced Relapse of Conditioned Behavioral Responding to Ethanol Cues in Rats , 2008, Biological Psychiatry.

[228]  Ian R. Wickersham,et al.  A Circuit Mechanism for Differentiating Positive and Negative Associations , 2015, Nature.

[229]  M. T. Shipley,et al.  Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? , 1994, Trends in Neurosciences.

[230]  Julia C. Lemos,et al.  Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive , 2012, Nature.

[231]  Michele Pignatelli,et al.  Antagonistic negative and positive neurons of the basolateral amygdala , 2016, Nature Neuroscience.