Transmembrane but not soluble helices fold inside the ribosome tunnel

[1]  A. Merry,et al.  Physical principles , 2018, Practical Perioperative Transoesophageal Echocardiography.

[2]  F. Förster,et al.  Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum , 2018, Science.

[3]  J. Kowal,et al.  Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation , 2018, Science.

[4]  Huilin Li,et al.  The atomic structure of a eukaryotic oligosaccharyl transferase complex , 2018, Nature.

[5]  I. Vattulainen,et al.  The role of hydrophobic matching on transmembrane helix packing in cells , 2017, Cell stress.

[6]  C. Deutsch,et al.  Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel. , 2017, Journal of molecular biology.

[7]  Jingdong Cheng,et al.  The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling , 2017, eLife.

[8]  I. Mingarro,et al.  Membrane insertion and topology of the translocon-associated protein (TRAP) gamma subunit. , 2017, Biochimica et biophysica acta. Biomembranes.

[9]  G. Heijne,et al.  Mutational analysis of protein folding inside the ribosome exit tunnel , 2017, FEBS letters.

[10]  G. von Heijne,et al.  Biological insertion of computationally designed short transmembrane segments , 2016, Scientific Reports.

[11]  Alexander D. MacKerell,et al.  Additive CHARMM force field for naturally occurring modified ribonucleotides , 2016, J. Comput. Chem..

[12]  G. von Heijne,et al.  Cotranslational Protein Folding inside the Ribosome Exit Tunnel , 2015, Cell reports.

[13]  R. Hegde,et al.  Structures of the scanning and engaged states of the mammalian SRP-ribosome complex , 2015, eLife.

[14]  P. Penczek,et al.  Structural Snapshots of Actively Translating Human Ribosomes , 2015, Cell.

[15]  P. Whitley,et al.  Stitching proteins into membranes, not sew simple , 2014, Biological chemistry.

[16]  C. Deutsch,et al.  Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome. , 2014, Journal of molecular biology.

[17]  Marc A. Marti-Renom,et al.  Structure-based statistical analysis of transmembrane helices , 2013, European Biophysics Journal.

[18]  A. Elofsson,et al.  Charge pair interactions in transmembrane helices and turn propensity of the connecting sequence promote helical hairpin insertion. , 2013, Journal of molecular biology.

[19]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[20]  Daniel N. Wilson,et al.  Mechanisms of SecM-mediated stalling in the ribosome. , 2012, Biophysical journal.

[21]  K. Lin,et al.  Cotranslational protein folding within the ribosome tunnel influences trigger-factor recruitment. , 2012, Biophysical journal.

[22]  M. Pool,et al.  Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon , 2011, The Journal of cell biology.

[23]  Luis Carrasco,et al.  Membrane Integration of Poliovirus 2B Viroporin , 2011, Journal of Virology.

[24]  Alexander D. MacKerell,et al.  Impact of 2′‐hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all‐atom additive force field for RNA , 2011, J. Comput. Chem..

[25]  K. Schulten,et al.  Free energy of nascent-chain folding in the translocon. , 2011, Journal of the American Chemical Society.

[26]  I. Mingarro,et al.  Membrane insertion and topology of the translocating chain-associating membrane protein (TRAM). , 2011, Journal of molecular biology.

[27]  Zoya Ignatova,et al.  Folding at the birth of the nascent chain: coordinating translation with co-translational folding. , 2011, Current opinion in structural biology.

[28]  Daniel N. Wilson,et al.  Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. , 2010, Molecular cell.

[29]  I. Mingarro,et al.  Membrane Insertion and Biogenesis of the Turnip Crinkle Virus p9 Movement Protein , 2010, Journal of Virology.

[30]  C. Deutsch,et al.  A folding zone in the ribosomal exit tunnel for Kv1.3 helix formation. , 2010, Journal of molecular biology.

[31]  Marco Gartmann,et al.  α-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel , 2010, Nature Structural &Molecular Biology.

[32]  Klaus Schulten,et al.  Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome , 2009, Science.

[33]  G. von Heijne,et al.  Insertion of short transmembrane helices by the Sec61 translocon , 2009, Proceedings of the National Academy of Sciences.

[34]  Andrey Kosolapov,et al.  Tertiary Interactions within the Ribosomal Exit Tunnel , 2009, Nature Structural &Molecular Biology.

[35]  Vijay S Pande,et al.  Side-chain recognition and gating in the ribosome exit tunnel , 2008, Proceedings of the National Academy of Sciences.

[36]  Gunnar von Heijne,et al.  How translocons select transmembrane helices. , 2008, Annual review of biophysics.

[37]  T. Rapoport Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes , 2007, Nature.

[38]  M Gerstein,et al.  The geometry of the ribosomal polypeptide exit tunnel. , 2006, Journal of molecular biology.

[39]  Alexei Vagin,et al.  Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. , 2006, Journal of molecular biology.

[40]  Guy Ziv,et al.  Ribosome exit tunnel can entropically stabilize α-helices , 2005 .

[41]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[42]  Jianli Lu,et al.  Folding zones inside the ribosomal exit tunnel , 2005, Nature Structural &Molecular Biology.

[43]  C. Deutsch,et al.  Secondary structure formation of a transmembrane segment in Kv channels. , 2005, Biochemistry.

[44]  G. Heijne,et al.  Recognition of transmembrane helices by the endoplasmic reticulum translocon , 2005, Nature.

[45]  Peter J McCormick,et al.  Nascent Membrane and Secretory Proteins Differ in FRET-Detected Folding Far inside the Ribosome and in Their Exposure to Ribosomal Proteins , 2004, Cell.

[46]  G. von Heijne,et al.  Different conformations of nascent polypeptides during translocation across the ER membrane , 2000, BMC Cell Biology.

[47]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[48]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[49]  A. Miele,et al.  Free energy of burying hydrophobic residues in the interface between protein subunits. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  B. Kuhlman,et al.  An exceptionally stable helix from the ribosomal protein L9: implications for protein folding and stability. , 1997, Journal of molecular biology.

[51]  Jialing Lin,et al.  Both Lumenal and Cytosolic Gating of the Aqueous ER Translocon Pore Are Regulated from Inside the Ribosome during Membrane Protein Integration , 1997, Cell.

[52]  G. von Heijne,et al.  A Nascent Secretory Protein 5 Traverse the Ribosome/Endoplasmic Reticulum Translocase Complex as an Extended Chain (*) , 1996, The Journal of Biological Chemistry.

[53]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[54]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[55]  R. Raines,et al.  Amide-Amide and Amide-Water Hydrogen Bonds: Implications for Protein Folding and Stability. , 1994, Journal of the American Chemical Society.

[56]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[57]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[58]  D Thirumalai,et al.  Ribosome exit tunnel can entropically stabilize alpha-helices. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[60]  D. Engelman,et al.  Helical membrane protein folding, stability, and evolution. , 2000, Annual review of biochemistry.

[61]  S. White,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[62]  A. Johnson,et al.  The translocon: a dynamic gateway at the ER membrane. , 1999, Annual review of cell and developmental biology.