Extreme quantile estimation using order statistics with minimum cross-entropy principle
暂无分享,去创建一个
[1] E. Simiu,et al. Extreme Wind Distribution Tails: A “Peaks over Threshold” Approach , 1996 .
[2] D. S. Jones,et al. Elementary information theory , 1979 .
[3] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[4] Rodney W. Johnson,et al. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.
[5] C. Mallows. Bounds on Distribution Functions in Terms of Expectations of Order- Statistics , 1973 .
[6] J. Hosking,et al. Parameter and quantile estimation for the generalized pareto distribution , 1987 .
[7] S. Ariaratnam,et al. Crossing rate analysis of nonGaussian response of linear systems , 1996 .
[8] J. Kadane. A Moment Problem for Order Statistics , 1971 .
[9] J. R. Wallis,et al. Regional Frequency Analysis: An Approach Based on L-Moments , 1997 .
[10] Janos Galambos,et al. Classical Extreme Value Model and Prediction of Extreme Winds , 1999 .
[11] R. Hartley. Transmission of information , 1928 .
[12] J. N. Kapur,et al. Entropy optimization principles with applications , 1992 .
[13] A. Naess,et al. Estimation of Long Return Period Design Values for Wind Speeds , 1998 .
[14] Claude E. Shannon,et al. A mathematical theory of communication , 1948, MOCO.
[15] G. J. Hahn,et al. Statistical models in engineering , 1967 .