Multi‐scenario Interpretations From Sparse Fault Evidence Using Graph Theory and Geological Rules

The characterization of geological faults from geological and geophysical data is often subject to uncertainties, owing to data ambiguity and incomplete spatial coverage. We propose a stochastic sampling algorithm which generates fault network scenarios compatible with sparse fault evidence while honoring some geological concepts. This process is useful for reducing interpretation bias, formalizing interpretation concepts, and assessing first‐order structural uncertainties. Each scenario is represented by an undirected association graph, where a fault corresponds to an isolated clique, which associates pieces of fault evidence represented as graph nodes. The simulation algorithm samples this association graph from the set of edges linking the pieces of fault evidence that may be interpreted as part of the same fault. Each edge carries a likelihood that the endpoints belong to the same fault surface, expressing some general and regional geological interpretation concepts. The algorithm is illustrated on several incomplete data sets made of three to six two‐dimensional seismic lines extracted from a three‐dimensional seismic image located in the Santos Basin, offshore Brazil. In all cases, the simulation method generates a large number of plausible fault networks, even when using restrictive interpretation rules. The case study experimentally confirms that retrieving the reference association is difficult due to the problem combinatorics. Restrictive and consistent rules increase the likelihood to recover the reference interpretation and reduce the diversity of the obtained realizations. We discuss how the proposed method fits in the quest to rigorously (1) address epistemic uncertainty during structural studies and (2) quantify subsurface uncertainty while preserving structural consistency.

[1]  T. C. Chamberlin The Method of Multiple Working Hypotheses , 1931, The Journal of Geology.

[2]  Same-sex Marriage WHAT DO YOU THINK? , 1912, California state journal of medicine.

[3]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[4]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[5]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[6]  Temple F. Smith,et al.  New Stratigraphic Correlation Techniques , 1980, The Journal of Geology.

[7]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  J. Watterson Fault dimensions, displacements and growth , 1986 .

[9]  J. Walsh,et al.  Displacement Geometry in the Volume Containing a Single Normal Fault , 1987 .

[10]  B. Freeman,et al.  Fault correlation during seismic interpretation , 1990 .

[11]  D. Sanderson,et al.  Displacements, segment linkage and relay ramps in normal fault zones , 1991 .

[12]  Jean-Laurent Mallet,et al.  Discrete smooth interpolation in geometric modelling , 1992, Comput. Aided Des..

[13]  P. Gillespie,et al.  Limitations of dimension and displacement data from single faults and the consequences for data analysis and interpretation , 1992 .

[14]  C. Mann Uncertainty in geology , 1993 .

[15]  J. Gratier,et al.  Compatibility constraints on folded and faulted strata and calculation of total displacement using computational restoration (UNFOLD program) , 1993 .

[16]  L. Holden,et al.  Modelling Sub-seismic Fault Patterns using a Marked Point Process , 1994 .

[17]  R. Frodeman Geological reasoning: Geology as an interpretive and historical science , 1995 .

[18]  J. Gratier,et al.  An inverse method for determining three-dimensional fault geometry with thread criterion: application to strike-slip and thrust faults (Western Alps and California) , 1996 .

[19]  D. Ferrill,et al.  Normal fault corrugation: implications for growth and seismicity of active normal faults , 1999 .

[20]  N. Odling,et al.  Scaling of fracture systems in geological media , 2001 .

[21]  P. Thore,et al.  Modelling of stochastic faults and fault networks in a structural uncertainty study , 2001, Petroleum Geoscience.

[22]  Andrei Voronkov,et al.  The Inverse Method , 2001, Handbook of Automated Reasoning.

[23]  P. Cobbold,et al.  Segmentation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil , 2001 .

[24]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[25]  Pierre Thore,et al.  Structural uncertainties: Determination, management, and applications , 2002 .

[26]  A. Nicol,et al.  An alternative model for the growth of faults , 2002 .

[27]  L. Holden,et al.  Havana — a fault modeling tool , 2002 .

[28]  A. Edwards Communicating risks , 2003, BMJ : British Medical Journal.

[29]  H. Hack,et al.  How far will uncertainty of the subsurface limit the sustainable planning of the subsurface , 2003 .

[30]  M. Culshaw,et al.  Communicating the risks arising from geohazards , 2003 .

[31]  L. Holden,et al.  Stochastic Structural Modeling , 2003 .

[32]  L. Lines,et al.  Fundamentals of Geophysical Interpretation , 2004 .

[33]  Jan C. Rivenæs,et al.  A 3D stochastic model integrating depth, fault and property uncertainty for planning robust wells, Njord Field, offshore Norway , 2005, Petroleum Geoscience.

[34]  A. Tarantola Popper, Bayes and the inverse problem , 2006 .

[35]  Z. Shipton,et al.  What do you think this is? "Conceptual uncertainty" in geoscience interpretation , 2007 .

[36]  David R. Wood,et al.  On the Maximum Number of Cliques in a Graph , 2006, Graphs Comb..

[37]  Charles Ashbacher The Art of Computer Programming, Volume 4: Generating All Trees, History of Combinatorial Generation , 2007, J. Object Technol..

[38]  J. Caers,et al.  Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization , 2008 .

[39]  J. Cartwright,et al.  3D seismic characterisation of an array of blind normal faults in the Levant Basin, Eastern Mediterranean , 2008 .

[40]  Geir Evensen,et al.  Structural Surface Uncertainty Modeling and Updating Using the Ensemble Kalman Filter , 2010 .

[41]  F. Horowitz,et al.  Towards incorporating uncertainty of structural data in 3D geological inversion , 2010 .

[42]  P. Buffet,et al.  An uncertainty modelling workflow for structurally compartmentalized reservoirs , 2010 .

[43]  Guillaume Caumon,et al.  Towards Stochastic Time-Varying Geological Modeling , 2010 .

[44]  P. Boult,et al.  Using empirical geological rules to reduce structural uncertainty in seismic interpretation of faults , 2010 .

[45]  M. Jessell,et al.  Towards an integrated inversion of geoscientific data: What price of geology? , 2010 .

[46]  B. Lévy,et al.  Stochastic Simulation of Fault Networks From 2D Seismic Lines , 2010 .

[47]  B. Lévy,et al.  Stochastic simulations of fault networks in 3D structural modeling. , 2010 .

[48]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[49]  D. Sanderson,et al.  Deformation within a strike-slip fault network at Westward Ho!, Devon U.K.: Domino vs conjugate faulting , 2011 .

[50]  R. Schlische,et al.  How do the properties of a pre-existing normal-fault population influence fault development during a subsequent phase of extension? , 2011 .

[51]  A. Torabi,et al.  Scaling of fault attributes: A review , 2011 .

[52]  D. Stoyan,et al.  Nucleation and growth of geological faults , 2011 .

[53]  Guillaume Caumon,et al.  Method for Stochastic Inverse Modeling of Fault Geometry and Connectivity Using Flow Data , 2012, Mathematical Geosciences.

[54]  M. Jessell,et al.  Locating and quantifying geological uncertainty in three-dimensional models: Analysis of the Gippsland Basin, southeastern Australia , 2012 .

[55]  P. Davy,et al.  A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling , 2013 .

[56]  D. Nichols,et al.  Model‐uncertainty quantification in seismic tomography: method and applications , 2013 .

[57]  M. Jessell,et al.  A parametric method to model 3D displacements around faults with volumetric vector fields , 2013 .

[58]  G. Caumon,et al.  Management of ambiguities in magnetostratigraphic correlation , 2013 .

[59]  D. Sanderson,et al.  Fault interactions and reactivation within a normal-fault network at Milne Point, Alaska , 2014 .

[60]  Roland Martin,et al.  Next Generation Three-Dimensional Geologic Modeling and Inversion , 2014 .

[61]  J. Florian Wellmann,et al.  Validating 3-D structural models with geological knowledge for improved uncertainty evaluations , 2014 .

[62]  P. Abrahamsen,et al.  An Uncertainty Model for Fault Shape and Location , 2014, Mathematical Geosciences.

[63]  C. Jackson,et al.  Understanding the kinematics of salt-bearing passive margins: A critical test of competing hypotheses for the origin of the Albian Gap, Santos Basin, offshore Brazil , 2015 .

[64]  Guillaume Caumon,et al.  Impact of the en echelon fault connectivity on reservoir flow simulations , 2015 .

[65]  Björn Zehner,et al.  Workflows for generating tetrahedral meshes for finite element simulations on complex geological structures , 2015, Comput. Geosci..

[66]  K. Miller,et al.  Efficient visibility criterion for discontinuities discretised by triangular surface meshes , 2015 .

[67]  C. Bond Uncertainty in Structural Interpretation: Lessons to be learnt , 2015 .

[68]  I. Manighetti,et al.  Generic along‐strike segmentation of Afar normal faults, East Africa: Implications on fault growth and stress heterogeneity on seismogenic fault planes , 2015 .

[69]  G. Caumon,et al.  Stochastic structural modelling in sparse data situations , 2015 .

[70]  C. Zheng,et al.  Engineering Analysis with Boundary Elements , 2017 .

[71]  C. Bond,et al.  Interpretational variability of structural traps: implications for exploration risk and volume uncertainty , 2015, Special Publications.

[72]  G. Caumon,et al.  Sampling the uncertainty associated with segmented normal fault interpretation using a stochastic downscaling method , 2015 .

[73]  C. Julio Conditionnement de la modélisation stochastique 3D des réseaux de failles , 2015 .

[74]  A. Rotevatn,et al.  Supra-salt normal fault growth during the rise and fall of a diapir: Perspectives from 3D seismic reflection data, Norwegian North Sea , 2016 .

[75]  J. Wellmann,et al.  Structural geologic modeling as an inference problem: A Bayesian perspective , 2016 .

[76]  P. Renard,et al.  Impact of a stochastic sequential initiation of fractures on the spatial correlations and connectivity of discrete fracture networks , 2016 .

[77]  Samuel T. Thiele,et al.  The topology of geology 2: Topological uncertainty , 2016 .

[78]  G. Yielding The geometry of branch lines , 2016, Special Publications.

[79]  P Zakian,et al.  A Monte Carlo adapted finite element method for dislocation simulation of faults with uncertain geometry , 2017, Journal of Earth System Science.

[80]  F. Wellmann,et al.  Methods and uncertainty estimations of 3-D structural modelling in crystalline rocks: a case study , 2017 .

[81]  K. S. Thingbaijam,et al.  Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations , 2017, Pure and Applied Geophysics.

[82]  J. Caers,et al.  Quantifying structural uncertainty on fault networks using a marked point process within a Bayesian framework , 2017 .

[83]  Adam Wierman,et al.  Thinking Fast and Slow , 2017, SIGMETRICS Perform. Evaluation Rev..

[84]  L. Rivera,et al.  Revisiting the 1992 Landers earthquake: a Bayesian exploration of co-seismic slip and off-fault damage , 2017 .

[85]  J. Shaw,et al.  Building Objective 3D Fault Representations in Active Tectonic Settings , 2017 .

[86]  M. Grigoriu,et al.  Tsunami hazard assessments with consideration of uncertain earthquake slip distribution and location , 2017 .

[87]  Guillaume Caumon,et al.  Uncertainty management in stratigraphic well correlation and stratigraphic architectures: A training-based method , 2018, Comput. Geosci..

[88]  Guillaume Caumon,et al.  3-D Structural geological models: Concepts, methods, and uncertainties , 2018 .

[89]  Lachlan Grose,et al.  Inversion of Structural Geology Data for Fold Geometry , 2018, Journal of Geophysical Research: Solid Earth.

[90]  Mark Lindsay,et al.  Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization , 2018 .

[91]  G. Caumon,et al.  A parametric fault displacement model to introduce kinematic control into modeling faults from sparse data , 2018 .

[92]  B. Hager,et al.  The Effects of Fault Roughness on the Earthquake Nucleation Process , 2018 .

[93]  M. Simons,et al.  Accounting for uncertain fault geometry in earthquake source inversions – I: theory and simplified application , 2018 .

[94]  S. Fomel,et al.  Building realistic structure models to train convolutional neural networks for seismic structural interpretation , 2019, GEOPHYSICS.

[95]  Cristina G. Wilson,et al.  How can geologic decision-making under uncertainty be improved? , 2019, Solid Earth.

[96]  José A. Álvarez-Gómez,et al.  FMC - Earthquake focal mechanisms data management, cluster and classification , 2019, SoftwareX.

[97]  R. Bell,et al.  How do normal faults grow? , 2015, Journal of Structural Geology.

[98]  M. Jessell,et al.  Topological Analysis in Monte Carlo Simulation for Uncertainty Estimation , 2019 .

[99]  P. Sava,et al.  Appraising structural interpretations using seismic data — Theoretical elements , 2019, GEOPHYSICS.

[100]  C. Bond,et al.  Quantification of uncertainty in 3-D seismic interpretation: implications for deterministic and stochastic geomodelling and machine learning , 2019 .

[101]  Guillaume Caumon,et al.  Structural Interpretation of Sparse Fault Data Using Graph Theory and Geological Rules , 2019, Mathematical Geosciences.

[102]  A. E. Heath,et al.  Modelling Fault Zone Displacement Partitioning for Risking Across-Fault Juxtaposition , 2019, 81st EAGE Conference and Exhibition 2019.

[103]  Awad Bilal Quantification of uncertainty in 3-D seismic interpretation: implications for deterministic and stochastic geomodelling and machine learning , 2019 .

[104]  M. Jessell,et al.  Towards geologically reasonable lithological classification from integrated geophysical inverse modelling: methodology and application case , 2019 .

[105]  M. Jessell,et al.  Inversion of geological knowledge for fold geometry , 2019, Journal of Structural Geology.

[106]  Guillaume Caumon,et al.  Automatic correction and simplification of geological maps and cross-sections for numerical simulations , 2019, Comptes Rendus Geoscience.

[107]  A. Nicol,et al.  The growth of faults , 2020 .