Methods for calculating forces within quantum Monte Carlo simulations

Atomic force calculations within the variational and diffusion quantum Monte Carlo methods are described. The advantages of calculating diffusion quantum Monte Carlo forces with the ‘pure’ rather than the ‘mixed’ probability distribution are discussed. An accurate and practical method for calculating forces using the pure distribution is presented and tested for the SiH molecule. The statistics of force estimators are explored and violations of the central limit theorem are found in some cases.

[1]  R. Needs,et al.  Phase diagram of the low-density two-dimensional homogeneous electron gas. , 2009, Physical review letters.

[2]  R J Needs,et al.  Energy derivatives in quantum Monte Carlo involving the zero-variance property. , 2008, The Journal of chemical physics.

[3]  D. Alfé,et al.  Hydrogen dissociation on Mg(0001) studied via quantum Monte Carlo calculations , 2008, 0811.3313.

[4]  A. Badinski,et al.  Total forces in the diffusion Monte Carlo method with nonlocal pseudopotentials , 2008 .

[5]  Manolo C Per,et al.  Electron-nucleus cusp correction and forces in quantum Monte Carlo. , 2008, The Journal of chemical physics.

[6]  A. Badinski,et al.  Nodal Pulay terms for accurate diffusion quantum Monte Carlo forces , 2008 .

[7]  C. Attaccalite,et al.  Stable liquid hydrogen at high pressure by a novel Ab initio molecular-dynamics calculation. , 2008, Physical review letters.

[8]  D. Alfé,et al.  Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations , 2008, 0801.2865.

[9]  J. Trail Alternative sampling for variational quantum Monte Carlo. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  J R Trail,et al.  Heavy-tailed random error in quantum Monte Carlo. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  A. Badinski,et al.  Accurate forces in quantum Monte Carlo calculations with nonlocal pseudopotentials. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  R J Needs,et al.  Energies of the first row atoms from quantum Monte Carlo. , 2007, The Journal of chemical physics.

[13]  Ryo Maezono,et al.  Equation of state and Raman frequency of diamond from quantum Monte Carlo simulations. , 2007, Physical review letters.

[14]  C J Umrigar,et al.  Optimization of quantum Monte Carlo wave functions by energy minimization. , 2007, The Journal of chemical physics.

[15]  C. Umrigar,et al.  Alleviation of the Fermion-sign problem by optimization of many-body wave functions. , 2006, Physical review letters.

[16]  R J Needs,et al.  Inhomogeneous backflow transformations in quantum Monte Carlo calculations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  D. Ceperley,et al.  Quantum Monte Carlo simulation of the high-pressure molecular-atomic crossover in fluid hydrogen. , 2006, Physical review letters.

[18]  R J Needs,et al.  Norm-conserving Hartree-Fock pseudopotentials and their asymptotic behavior. , 2009, The Journal of chemical physics.

[19]  G Galli,et al.  Electron emission from diamondoids: a diffusion quantum Monte Carlo study. , 2005, Physical review letters.

[20]  R. Needs,et al.  Variance-minimization scheme for optimizing Jastrow factors , 2005, physics/0505072.

[21]  R. Needs,et al.  Smooth relativistic Hartree-Fock pseudopotentials for H to Ba and Lu to Hg. , 2005, The Journal of chemical physics.

[22]  D. Alfé,et al.  Schottky defect formation energy in MgO calculated by diffusion Monte Carlo , 2005, cond-mat/0503074.

[23]  M. Alfredsson,et al.  Quantum Monte Carlo calculations of the structural properties and the B1-B2 phase transition of MgO , 2005, cond-mat/0502510.

[24]  D. Ceperley,et al.  Computational methods in coupled electron-ion Monte Carlo simulations. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  A. Rappe,et al.  Electronic quantum Monte Carlo calculations of atomic forces, vibrations, and anharmonicities. , 2004, The Journal of chemical physics.

[26]  D. Ceperley,et al.  Accurate, efficient, and simple forces computed with quantum Monte Carlo methods. , 2004, Physical review letters.

[27]  R. Needs,et al.  Jastrow correlation factor for atoms, molecules, and solids , 2004, 0801.0378.

[28]  R. Needs,et al.  Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals , 2004, 0801.0377.

[29]  M. Caffarel,et al.  Zero-variance zero-bias principle for observables in quantum Monte Carlo: Application to forces , 2003, physics/0310035.

[30]  P R C Kent,et al.  Quantum Monte Carlo study of the optical and diffusive properties of the vacancy defect in diamond. , 2003, Physical review letters.

[31]  Mosé Casalegno,et al.  Computing accurate forces in quantum Monte Carlo using Pulay’s corrections and energy minimization , 2003 .

[32]  Giulia Galli,et al.  Quantum Monte Carlo calculations of nanostructure optical gaps: application to silicon quantum dots. , 2002, Physical review letters.

[33]  M. Scheffler,et al.  Quantum Monte Carlo calculations of H2 dissociation on Si(001). , 2002, Physical review letters.

[34]  Tomoyasu Tanaka Methods of Statistical Physics , 2002 .

[35]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[36]  R. Needs,et al.  Comment on “Quantum Monte Carlo study of the dipole moment of CO” [J. Chem. Phys. 110, 11700 (1999)] , 1999, cond-mat/9912243.

[37]  C. Umrigar,et al.  Correlated sampling in quantum Monte Carlo: A route to forces , 1999, cond-mat/9911326.

[38]  F. Schautz,et al.  Response to “Comment on ‘Quantum Monte Carlo study of the dipole moment of CO’ ” [J. Chem. Phys. 112, 4419 (2000)] , 1999, cond-mat/9912277.

[39]  M. Caffarel,et al.  Zero-Variance Principle for Monte Carlo Algorithms , 1999, cond-mat/9911396.

[40]  Satoshi Itoh,et al.  Calculations of Silicon Self-Interstitial Defects , 1999 .

[41]  Stefano Baroni,et al.  Reptation Quantum Monte Carlo: A Method for Unbiased Ground-State Averages and Imaginary-Time Correlations , 1999 .

[42]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[43]  Natoli,et al.  Crystal structure of atomic hydrogen. , 1993, Physical review letters.

[44]  William A. Lester,et al.  Monte Carlo algorithms for expectation values of coordinate operators , 1991 .

[45]  D. Ceperley,et al.  Nonlocal pseudopotentials and diffusion Monte Carlo , 1991 .

[46]  Quantum chemistry by quantum monte carlo: Beyond ground-state energy calculations , 1985 .

[47]  H. F. King,et al.  Molecular symmetry. IV. The coupled perturbed Hartree–Fock method , 1983 .

[48]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[49]  James B. Anderson,et al.  Quantum chemistry by random walk. H 2P, H+3D3h1A′1, H23Σ+u, H41Σ+g, Be 1S , 1976 .

[50]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .