Polyelemental, Multicomponent Perovskite Semiconductor Libraries through Combinatorial Screening

Recently, perovskites with multiple cations, metals, and anions have shown very high efficiencies and stabilities for perovskite solar cells. The novel materials frequently exhibit unexpected and beneficial properties, outperforming simpler counterparts. The trend of increasing material complexity requires a systematic strategy to explore polyelemental “multicomponent engineering.” Here, a combinatorial approach is introduced to generate all possible, unique combinations within a set of available components. Thus, with each new component, the combinatorial framework can generate the full theoretical parameter space. Based on reported components, the experimental parameter space can then be identified. The exceptional material versatility of perovskites is suited for high‐throughput screening, machine‐learning, or data mining, laying the foundation for a “perovskite genome project” that thoroughly catalogues the entire material family for desired properties. This can provide the framework for theoretical simulations toward understanding the fundamental working principles of perovskite materials enabling the “next big thing” after perovskites. Finally, informed by literature, a promising candidate list for future material exploration is presented including novel organic‐free, Pb‐free, and all‐inorganic perovskites. These compounds are primary contenders toward stable, high efficiency, and reproducible materials for rapid industrialization of perovskite solar cells, lasers, light‐emitting diodes, photo detectors, or particle detectors.

[1]  A. Jen,et al.  High‐Performance Planar‐Heterojunction Solar Cells Based on Ternary Halide Large‐Band‐Gap Perovskites , 2015 .

[2]  A. Jen,et al.  Realizing a new class of hybrid organic–inorganic multifunctional perovskite , 2017 .

[3]  A. Salau Fundamental absorption edge in PbI2:KI alloys , 1980 .

[4]  T. Dittrich,et al.  Precipitation of CH3NH3PbCl3 in CH3NH3PbI3 and Its Impact on Modulated Charge Separation , 2015 .

[5]  Luis Camacho,et al.  Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells , 2017, Nature Energy.

[6]  Michael Saliba,et al.  A full overview of international standards assessing the long-term stability of perovskite solar cells , 2018, Journal of Materials Chemistry A.

[7]  Aron Walsh,et al.  Assessment of polyanion (BF4− and PF6−) substitutions in hybrid halide perovskites , 2015 .

[8]  H. L. Wells Über die Cäsium‐ und Kalium‐Bleihalogenide , 1893 .

[9]  Seonhee Lee,et al.  Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. , 2018, Journal of the American Chemical Society.

[10]  Dae Ho Song,et al.  Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin‐Coating Process , 2014, Advanced materials.

[11]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[12]  Tongle Bu,et al.  A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells , 2017 .

[13]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[14]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[15]  Dong Suk Kim,et al.  Ternary Halide Perovskites for Highly Efficient Solution-Processed Hybrid Solar Cells , 2016 .

[16]  Y. Qi,et al.  Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. , 2017, ACS applied materials & interfaces.

[17]  Zhibin Yang,et al.  Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells , 2016, Advanced materials.

[18]  D. Maurya,et al.  Magnetic studies of multiferroic Bi1−xSmxFeO3 ceramics synthesized by mechanical activation assisted processes , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Matthew J. Carnie,et al.  Perovskite processing for photovoltaics: a spectro-thermal evaluation , 2014 .

[20]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[21]  T. Ma,et al.  CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. , 2014, The journal of physical chemistry letters.

[22]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[23]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[24]  Patrick R. Brown,et al.  Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties , 2017 .

[25]  Sergii Yakunin,et al.  Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites , 2016, Nature Photonics.

[26]  †. A. David B. Mitzi,et al.  Preparation and Properties of (C4H9NH3)2EuI4: A Luminescent Organic−Inorganic Perovskite with a Divalent Rare-Earth Metal Halide Framework , 1997 .

[27]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[28]  S. Ogale,et al.  CH₃NH₃PbI(3-x)(BF₄)x: molecular ion substituted hybrid perovskite. , 2014, Chemical communications.

[29]  Liduo Wang,et al.  CH3NH3Pb1−xEuxI3 mixed halide perovskite for hybrid solar cells: the impact of divalent europium doping on efficiency and stability , 2018, RSC advances.

[30]  K. Catchpole,et al.  Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites , 2016 .

[31]  Yang Yang,et al.  Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. , 2016, Nano letters.

[32]  P. Woodward,et al.  Cs1–xRbxPbCl3 and Cs1–xRbxPbBr3 Solid Solutions: Understanding Octahedral Tilting in Lead Halide Perovskites , 2017 .

[33]  Antonio Abate,et al.  Perovskite Solar Cells Go Lead Free , 2017 .

[34]  Nripan Mathews,et al.  Lead-free germanium iodide perovskite materials for photovoltaic applications , 2015 .

[35]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[36]  V. Nagarajan,et al.  Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite , 2008 .

[37]  Assaf Y Anderson,et al.  Process-Function Data Mining for the Discovery of Solid-State Iron-Oxide PV. , 2017, ACS combinatorial science.

[38]  A. Jen,et al.  Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution. , 2016, Nano letters.

[39]  Tao Xu,et al.  Pseudohalide-induced moisture tolerance in perovskite CH3 NH3 Pb(SCN)2 I thin films. , 2015, Angewandte Chemie.

[40]  Q. Yu,et al.  Impact of cesium on the phase and device stability of triple cation Pb–Sn double halide perovskite films and solar cells , 2018 .

[41]  Y. Qi,et al.  Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis , 2016 .

[42]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[43]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[44]  Krishna Rajan,et al.  Combinatorial and high-throughput screening of materials libraries: review of state of the art. , 2011, ACS combinatorial science.

[45]  Q. Song,et al.  Copper/B2pin2-catalyzed C-H difluoroacetylation-cycloamidation of anilines leading to the formation of 3,3-difluoro-2-oxindoles. , 2017, Chemical communications.

[46]  Maximilian T. Hörantner,et al.  The Potential of Multijunction Perovskite Solar Cells , 2017 .

[47]  Wanjung Kim,et al.  Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells. , 2017, Nano letters.

[48]  Nakita K. Noel,et al.  Solution-Processed All-Perovskite Multi-Junction Solar Cells , 2019, Proceedings of the 11th International Conference on Hybrid and Organic Photovoltaics.

[49]  Chem. , 2020, Catalysis from A to Z.

[50]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[51]  J. Lloyd‐Hughes,et al.  Cs1−xRbxSnI3 light harvesting semiconductors for perovskite photovoltaics , 2018 .

[52]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[53]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[54]  Ligang Wang,et al.  A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells , 2019, Science.

[55]  Michael Saliba,et al.  Perovskite solar cells must come of age , 2018, Science.

[56]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[57]  A. Ciccioli,et al.  A study on the nature of the thermal decomposition of methylammonium lead iodide perovskite, CH3NH3PbI3: an attempt to rationalise contradictory experimental results , 2017 .

[58]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[59]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[60]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[61]  Jinsong Hu,et al.  Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade , 2018, Nature Communications.

[62]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[63]  Anders Hagfeldt,et al.  Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. , 2018, Angewandte Chemie.

[64]  Michael J. Fasolka,et al.  Combinatorial Materials Synthesis , 2003 .

[65]  Takashi Minemoto,et al.  Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air. , 2018, The journal of physical chemistry letters.

[66]  E. Sargent,et al.  Engineering of CH3 NH3 PbI3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties. , 2016, Angewandte Chemie.