Subgap states, doping and defect formation energies in amorphous oxide semiconductor a‐InGaZnO4 studied by density functional theory

Amorphous In‐Ga‐Zn‐O (a‐IGZO) is expected for channel layers in thin‐film transistors (TFTs). It is known that a‐IGZO is sensitive to an O/H‐containing atmosphere; therefore, it is important to clarify the roles of oxygen and hydrogen in a‐IGZO. This paper provides atomic and electronic structures, formation energies of defects and bond energies in a‐IGZO calculated by first‐principles density functional theory (DFT). It was confirmed that oxygen deficiencies having small formation energies (2–3.6 eV) form either deep fully‐occupied localized states near the valence band maximum or donor states, which depend on their local structures. All the hydrogen doping form OH bond and work as a donor. The stable OH bonds have small formation energy of ∼0.45 eV and consist of three metal cations coordinated to the O ion. The bond energy of GaO is calculated to be ∼2.0 eV, which is the largest among the chemical bonds in a‐IGZO (1.7 eV for InO and 1.5 eV for ZnO). This result supports the idea that the incorporation of Ga stabilizes a‐IGZO TFTs.

[1]  T. Kamiya,et al.  Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O: Percolation Conduction Examined by Analytical Model , 2009, Journal of Display Technology.

[2]  Jong-Wan Park,et al.  Improvement in the bias stability of amorphous indium gallium zinc oxide thin-film transistors using an O2 plasma-treated insulator , 2009 .

[3]  T. Kamiya,et al.  Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping* , 2009, Journal of Display Technology.

[4]  Hideo Hosono,et al.  First-principles study of native point defects in crystalline indium gallium zinc oxide , 2009 .

[5]  T. Kamiya,et al.  Electronic structure of the amorphous oxide semiconductor a‐InGaZnO4–x : Tauc–Lorentz optical model and origins of subgap states , 2009 .

[6]  Hideo Hosono,et al.  Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor , 2009 .

[7]  Chang Jung Kim,et al.  High Reliable and Manufacturable Gallium Indium Zinc Oxide Thin-Film Transistors Using the Double Layers as an Active Layer , 2009 .

[8]  Bon Seog Gu,et al.  12.1‐in. WXGA AMOLED display driven by InGaZnO thin‐film transistors , 2009 .

[9]  Byung Du Ahn,et al.  Comparison of the effects of Ar and H2 plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors , 2008 .

[10]  Hideo Hosono,et al.  Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing , 2008 .

[11]  Dong Myong Kim,et al.  Modeling of amorphous InGaZnO thin-film transistors based on the density of states extracted from the optical response of capacitance-voltage characteristics , 2008 .

[12]  B. Ryu,et al.  Structural and electronic properties of crystalline InGaO3(ZnO)m , 2008 .

[13]  Hideo Hosono,et al.  Electronic structure of oxygen deficient amorphous oxide semiconductor a‐InGaZnO4–x : Optical analyses and first‐principle calculations , 2008 .

[14]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[15]  Hideo Hosono,et al.  Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive x-ray photoelectron spectroscopy , 2008 .

[16]  Yu-Lin Wang,et al.  Stable room temperature deposited amorphous InGaZnO4 thin film transistors , 2008 .

[17]  J. Wager,et al.  Electronic properties of amorphous zinc tin oxide films by junction capacitance methods , 2008 .

[18]  Noriaki Ikeda,et al.  Application of amorphous oxide TFT to electrophoretic display , 2008 .

[19]  Jang-Yeon Kwon,et al.  42.2: World's Largest (15‐inch) XGA AMLCD Panel Using IGZO Oxide TFT , 2008 .

[20]  Hideo Hosono,et al.  Trap densities in amorphous-InGaZnO4 thin-film transistors , 2008 .

[21]  Hideo Hosono,et al.  Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states , 2008 .

[22]  Hyun-Joong Chung,et al.  Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water , 2008 .

[23]  Hideo Hosono,et al.  Circuits using uniform TFTs based on amorphous In‐Ga‐Zn‐O , 2007 .

[24]  Manabu Ito,et al.  Invited Paper Special Section on Electronic Displays " Front Drive " Display Structure for Color Electronic Paper Using Fully Transparent Amorphous Oxide Tft Array , 2022 .

[25]  Changjung Kim,et al.  Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules , 2007 .

[26]  J. Medvedeva,et al.  Averaging of the electron effective mass in multicomponent transparent conducting oxides , 2007, 0704.1499.

[27]  Hideo Hosono,et al.  Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations , 2007 .

[28]  T. Kamiya,et al.  High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering , 2006 .

[29]  H. Ohta,et al.  Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors , 2006 .

[30]  H. Ohta,et al.  Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4 , 2005 .

[31]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[32]  Hideo Hosono,et al.  Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films , 2004 .

[33]  Masataka Mizuno,et al.  Mechanism of electrical conductivity of transparent InGaZnO4 , 2000 .

[34]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[35]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[36]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.