Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles

Electro-optical switching with low voltage, free hysteresis and fast response speed is achieved in a facile manner by dispersing a small amount of ferroelectric nanoparticles (NPs) into blue phase liquid crystal. The large dipole moment of NPs contributes to the hysteresis-free switching, whereas the low voltage operation results from the introduction of the ferroelectric properties inherent to the NPs.

[1]  Yunfeng Lu,et al.  Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles. , 2012, Small.

[2]  Zhe Wang,et al.  Effects of 1,3,4-oxadiazoles with different rigid cores on the thermal and electro-optical performances of liquid crystalline blue phases , 2012 .

[3]  Shin‐Tson Wu,et al.  Dynamic response of a polymer-stabilized blue-phase liquid crystal , 2012 .

[4]  R. Hakobyan,et al.  Decrease in the threshold of electric Freedericksz transition in nematic liquid crystals doped with ferroelectric nanoparticles , 2012 .

[5]  Wanli He,et al.  Wide blue phase range and electro-optical performances of liquid crystalline composites doped with thiophene-based mesogens , 2012 .

[6]  Gary Cook,et al.  Electric field interactions and aggregation dynamics of ferroelectric nanoparticles in isotropic fluid suspensions , 2011 .

[7]  H. Cölfen,et al.  Barium titanate nanoparticle self-organization in an external electric field , 2011 .

[8]  Yung-Hsiang Chiu,et al.  Critical Field for a Hysteresis-Free BPLC Device , 2011, Journal of Display Technology.

[9]  Shin-Tson Wu,et al.  Effect of Polymer Concentration and Composition on Blue Phase Liquid Crystals , 2011, Journal of Display Technology.

[10]  Takahiro Ishinabe,et al.  Vertical field switching for blue-phase liquid crystal devices , 2011 .

[11]  Jae-Hong Park,et al.  11.1: Invited Paper: The World's First Blue Phase Liquid Crystal Display , 2011 .

[12]  Shin-Tson Wu,et al.  Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications , 2011 .

[13]  Shin-Tson Wu,et al.  A large Kerr constant polymer-stabilized blue phase liquid crystal , 2011 .

[14]  K. Ishikawa,et al.  Liquid crystalline amorphous blue phase and its large electrooptical Kerr effect , 2011 .

[15]  Shin‐Tson Wu,et al.  Prospects of emerging polymer‐stabilized blue‐phase liquid‐crystal displays , 2010 .

[16]  Shin-Tson Wu,et al.  Hysteresis Effects in Blue-Phase Liquid Crystals , 2010, Journal of Display Technology.

[17]  H. Takezoe,et al.  Stable Amorphous Blue Phase of Bent-Core Nematic Liquid Crystals Doped with a Chiral Material , 2010 .

[18]  Shin-Tson Wu,et al.  Extended Kerr effect of polymer-stabilized blue-phase liquid crystals , 2010 .

[19]  Yan Li,et al.  Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes , 2010 .

[20]  Hari M. Atkuri,et al.  Nano-colloids of Sn2P2S6 in Nematic Liquid Crystal Pentyl-cianobiphenile , 2010 .

[21]  Shin-Tson Wu,et al.  Low voltage blue-phase liquid crystal displays , 2009 .

[22]  Hiroyuki Yoshida,et al.  Nanoparticle-Stabilized Cholesteric Blue Phases , 2009 .

[23]  Shin-Tson Wu,et al.  Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays , 2009 .

[24]  W. Huang,et al.  Wide Blue Phase Range in a Hydrogen‐Bonded Self‐Assembled Complex of Chiral Fluoro‐Substituted Benzoic Acid and Pyridine Derivative , 2009 .

[25]  Jonathan V Selinger,et al.  Theory of ferroelectric nanoparticles in nematic liquid crystals. , 2009, Physical review letters.

[26]  O. Buchnev,et al.  A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal , 2009 .

[27]  Hari M. Atkuri,et al.  Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids , 2009 .

[28]  Hao Qi,et al.  Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays , 2008 .

[29]  I. Nandhakumar,et al.  Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response , 2008 .

[30]  M. Sato,et al.  Electro‐Optical Switching in a Blue Phase III Exhibited by a Chiral Liquid Crystal Oligomer , 2007 .

[31]  Anatoliy Glushchenko,et al.  Orientational coupling amplification in ferroelectric nematic colloids. , 2006, Physical review letters.

[32]  Toshihiko Nagamura,et al.  Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range , 2005 .

[33]  Electrorotation of colloidal particles in liquid crystals. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  J. West,et al.  New non‐synthetic method to modify properties of liquid crystals using micro‐ and nano‐particles , 2005 .

[35]  Harry J. Coles,et al.  Liquid crystal ‘blue phases’ with a wide temperature range , 2005, Nature.

[36]  A. Yoshizawa,et al.  A blue phase observed for a novel chiral compound possessing molecular biaxiality , 2005 .

[37]  T. Nagamura,et al.  Large Electro‐optic Kerr Effect in Polymer‐Stabilized Liquid‐Crystalline Blue Phases , 2005 .

[38]  Victor Yu. Reshetnyak,et al.  Dielectric relaxation spectroscopy of a nematic liquid crystal doped with ferroelectric Sn 2 P 2 S 6 nanoparticles , 2003 .

[39]  Victor Yu. Reshetnyak,et al.  Ferroelectric nematic suspension , 2003 .

[40]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[41]  K. Bärner,et al.  Stable suspensions of ferroelectric nm-LiNbO3 — and nm-PbTiO3 — particles in hydrocarbon carrier liquids , 1996 .

[42]  Paul R. Gerber,et al.  Electro-Optical Effects of a Small-Pitch Blue-Phase System , 1985 .

[43]  James P. Sethna,et al.  Theory of the blue phase of cholesteric liquid crystals. , 1981 .