Enthalpy and entropy of nanoparticle association from temperature-dependent cryo-TEM.

Quantum dots form equilibrium structures in liquid dispersions, due to thermodynamic forces that are often hard to quantify. Analysis of these structures, visualized using cryogenic electron microscopy, yields their formation free energy. Here we show that the nanoparticle interaction free energy can be further separated into the enthalpic and entropic contributions, using the temperature dependence of the assembled structures. Monodisperse oleic acid-capped PbSe nanoparticles dispersed in decalin were used as a model system, and the temperature-dependent equilibrium structures were imaged by cryo-TEM, after quenching from different initial temperatures. The interaction enthalpy and entropy follow from van 't Hoff's exact equation for the temperature dependence of thermodynamic equilibria, now applied to associating nanoparticles. The enthalpic component gives the magnitude of the contact interaction, which is crucial information in understanding the energetics of the self-assembly of nanoparticles into ordered structures.

[1]  M. Dijkstra,et al.  Entropy-driven formation of binary semiconductor-nanocrystal superlattices. , 2010, Nano letters.

[2]  A. Philipse,et al.  Second virial coefficients of dipolar hard spheres , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  M. Dijkstra,et al.  Efficient method for predicting crystal structures at finite temperature: variable box shape simulations. , 2009, Physical review letters.

[4]  Christopher E. Wilmer,et al.  Nanoscale forces and their uses in self-assembly. , 2009, Small.

[5]  A. Philipse,et al.  Ultracentrifugation of single-domain magnetite particles and the De Gennes-Pincus approach to ferromagnetic colloids in the dilute regime. , 2009, The journal of physical chemistry. B.

[6]  Yuval Golan,et al.  The role of interparticle and external forces in nanoparticle assembly. , 2008, Nature materials.

[7]  R. Koole,et al.  Dipolar structures in colloidal dispersions of PbSe and CdSe quantum dots. , 2007, Nano letters.

[8]  Eric R. Weeks,et al.  Confocal microscopy of colloids , 2007 .

[9]  R. Koole,et al.  The hidden role of acetate in the PbSe nanocrystal synthesis. , 2006, Journal of the American Chemical Society.

[10]  J. Tellinghuisen Van't Hoff analysis of K° (T): How good…or bad? , 2006 .

[11]  W. Kegel,et al.  Quantitative real-space analysis of self-assembled structures of magnetic dipolar colloids. , 2006, Physical review letters.

[12]  N. Sommerdijk,et al.  Spatial and temporal resolution in cryo-electron microscopy : a scope for nano-chemistry , 2005 .

[13]  Y. Koga,et al.  Calorimetric study on self-assembling of two kinds of monometallic nanoparticles in solution , 2005 .

[14]  J. Malm,et al.  Cryo-TEM observation of 3-dimensionally ordered aggregates of 5-nm gold particles in organic solvents , 2004 .

[15]  A. Philipse,et al.  Sedimentation-diffusion profiles and layered sedimentation of charged colloids at low ionic strength , 2003 .

[16]  A. Philipse,et al.  Magnetic Colloids from Magnetotactic Bacteria: Chain Formation and Colloidal Stability , 2002 .

[17]  G. Pellicane,et al.  On the application of Flory–Huggins and integral equation theories to asymmetric hard sphere mixtures , 1999 .

[18]  A. Blaaderen Quantitative real-space analysis of colloidal structures and dynamics with confocal scanning light microscopy , 1997 .

[19]  H. Reiss,et al.  Length scale for configurational entropy in microemulsions , 1996 .

[20]  A. Verkleij,et al.  Perspective and limitations of cryo‐electron microscopy , 1991, Journal of microscopy.

[21]  Daniel C. Harris,et al.  Quantitative Chemical Analysis , 1968, Nature.

[22]  K. Denbigh,et al.  The Principles of Chemical Equilibrium , 1956 .

[23]  F. Haber Über die Darstellung des Ammoniaks aus Stickstoff und Wasserstoff , 1910, Naturwissenschaften.

[24]  A. Rogach Binary superlattices of nanoparticles: self-assembly leads to "metamaterials". , 2004, Angewandte Chemie.