Table-like magnetocaloric effect and enhanced refrigerant capacity of HPS La(Fe,Si)13-based composites by Ce–Co grain boundary diffusion

[1]  S. Rashidi,et al.  Magnetocaloric Materials , 2021, Reference Module in Materials Science and Materials Engineering.

[2]  R. Ramanujan,et al.  A bimodal particle size distribution enhances mechanical and magnetocaloric properties of low-temperature hot pressed Sn-bonded La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2 bulk composites , 2019, Journal of Magnetism and Magnetic Materials.

[3]  X. L. Feng,et al.  Influence of particle size on the mechanical properties and magnetocaloric effect of La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Sn composites , 2018, Journal of Magnetism and Magnetic Materials.

[4]  N. Sun,et al.  Study of the Microstructure, Mechanical, and Magnetic Properties of LaFe11.6Si1.4Hy/Bi Magnetocaloric Composites , 2018, Materials.

[5]  X. L. Feng,et al.  Microstructure evolution and large magnetocaloric effect of La 0.8 Ce 0.2 (Fe 0.95 Co 0.05 ) 11.8 Si 1.2 alloy prepared by strip-casting and annealing , 2018 .

[6]  R. Ramanujan,et al.  La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Sn42Bi58 magnetocaloric composites prepared by low temperature hot pressing , 2018 .

[7]  J. Luo,et al.  Microstructure and improved magnetocaloric properties: LaFeSi/LaAl magnets prepared by spark plasma sintering technique , 2018 .

[8]  Piotr Gębara,et al.  Broadening of temperature working range in magnetocaloric La(Fe,Co,Si)13- based multicomposite , 2017 .

[9]  A. Yan,et al.  LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing , 2016 .

[10]  H. Bai,et al.  Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon , 2016 .

[11]  R. M’nassri Enhancement of Refrigeration Capacity and Table-Like Magnetocaloric Effect in LaFe 10.7Co 0.8Si 1.5/ La 0.6Pr 0.4Fe 10.7Co 0.8Si 1.5 Composite , 2016 .

[12]  X. Zhong,et al.  Properties improvement and structural optimization of sintered NdFeB magnets by non-rare earth compound grain boundary diffusion , 2015 .

[13]  H. Luo,et al.  Enhanced thermal conductivity in off-stoichiometric La-(Fe,Co)-Si magnetocaloric alloys , 2015 .

[14]  J. Liu,et al.  LaFe11.6 Si1.4/Cu Magnetocaloric Composites Prepared by Hot Pressing , 2015, IEEE Transactions on Magnetics.

[15]  Yilei Zhang,et al.  Large entropy change, adiabatic temperature change, and small hysteresis in La(Fe,Mn)11.6Si1.4 strip-cast flakes , 2015 .

[16]  J. Eckert,et al.  A new type of La(Fe,Si)13-based magnetocaloric composite with amorphous metallic matrix , 2015 .

[17]  Tao Zhang,et al.  Effect of Particle Size on the Hysteretic Behavior and Magnetocaloric Effect of La0.5Pr0.5Fe11.4Si1.6 Compound , 2014, Acta Metallurgica Sinica (English Letters).

[18]  F. Hu,et al.  Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)(13)-based magnetic refrigeration materials , 2014 .

[19]  D. Zeng,et al.  Magnetic properties and magnetocaloric effects in amorphous and crystalline Gd55Co35Ni10 ribbons , 2013 .

[20]  O. Gutfleisch,et al.  Exploring La(Fe,Si)13-based magnetic refrigerants towards application , 2012 .

[21]  H. Sepehri-Amin,et al.  The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13 , 2012 .

[22]  Yongbai Tang,et al.  Phase relation of LaFe11·6Si1·4 compounds annealed at different high-temperature and the magnetic property of LaFe11·6–xCoxSi1·4 compounds , 2012, Bulletin of Materials Science.

[23]  P. Wendhausen,et al.  Effect of carbon on magnetocaloric effect of LaFe11.6Si1.4 compounds and on the thermal stability of its hydrides , 2012 .

[24]  F. Hu,et al.  Particle size dependent hysteresis loss in La0.7Ce0.3Fe11.6Si1.4C0.2 first‐order systems , 2012 .

[25]  Yongbo Tang,et al.  The effect of high-temperature annealing on LaFe11.5Si1.5 and the magnetocaloric properties of La1−xCexFe11.5Si1.5 compounds , 2011 .

[26]  Konstantin P. Skokov,et al.  Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La–Fe–Si alloys , 2011 .

[27]  Christian R.H. Bahl,et al.  Properties of magnetocaloric La(Fe,Co,Si)13 produced by powder metallurgy , 2010 .

[28]  L. Schultz,et al.  Novel Design of La(Fe,Si)13 Alloys Towards High Magnetic Refrigeration Performance , 2010, Advanced materials.

[29]  Sun Ji-rong,et al.  Effect of R substitution on magnetic properties and magnetocaloric effects of La1−xRxFe11.5Si1.5 compounds with R = Ce, Pr and Nd , 2009 .

[30]  M. Katter,et al.  Magnetocaloric Properties of ${\hbox{La}}({\hbox{Fe}},{\hbox{Co}},{\hbox{Si}})_{13}$ Bulk Material Prepared by Powder Metallurgy , 2008, IEEE Transactions on Magnetics.

[31]  C. Larica,et al.  La(Fe1−xCox)11.44Al1.56: A composite system for Ericsson-cycle-based magnetic refrigerators , 2006 .

[32]  F. Hu,et al.  Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1-xCOx)11.9Si1.1 , 2005 .

[33]  O. Gutfleisch,et al.  Large magnetocaloric effect in melt-spun LaFe13−xSix , 2005 .

[34]  O. Gutfleisch,et al.  Structure and magnetic entropy change of melt-spun LaFe11.57Si1.43 ribbons , 2005 .

[35]  L. P. Cardoso,et al.  Giant magnetocaloric effect in Gd5(Si2Ge2) alloy with low purity Gd , 2004 .

[36]  S. Fujieda,et al.  Enhancements of Magnetocaloric Effects in La(Fe0:90Si0:10)13 and Its Hydride by Partial Substitution of Ce for La , 2004 .

[37]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[38]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[39]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[40]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[41]  F. Hu,et al.  Great magnetic entropy change in La(Fe, M)13 (M=Si, Al) with Co doping , 2000 .

[42]  Vitalij K. Pecharsky,et al.  The Giant Magnetocaloric Effect , 1998 .

[43]  K. Gschneidner,et al.  MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .

[44]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[45]  V. Czermak,et al.  Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology - New Series , 1982 .

[46]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[47]  B. Banerjee On a generalised approach to first and second order magnetic transitions , 1964 .