N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2

SARS-CoV-2 entry into host cells is orchestrated by the spike (S) glycoprotein that contains an immunodominant receptor-binding domain (RBD) targeted by the largest fraction of neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge. SARS-CoV-2 variants, including the 501Y.V2 and B.1.1.7 lineages, harbor frequent mutations localized in the NTD supersite suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs to protective immunity.

[1]  James D. Allen,et al.  Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions and monocytes for optimal therapeutic protection , 2020, bioRxiv.

[2]  Carl A. B. Pearson,et al.  Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England , 2020, medRxiv.

[3]  Sergei L. Kosakovsky Pond,et al.  Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa , 2020, medRxiv.

[4]  Jonathan R. McDaniel,et al.  Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma , 2020, bioRxiv.

[5]  J. Bloom,et al.  Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 , 2020, bioRxiv.

[6]  M. Nussenzweig,et al.  Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo , 2020, The Journal of experimental medicine.

[7]  W. P. Duprex,et al.  Natural deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape , 2020, bioRxiv.

[8]  Lisa E. Gralinski,et al.  SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo , 2020, Science.

[9]  Gaurav D. Gaiha,et al.  Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host , 2020, The New England journal of medicine.

[10]  Y. Matsuura,et al.  The N-terminal domain of spike glycoprotein mediates SARS-CoV-2 infection by associating with L-SIGN and DC-SIGN , 2020, bioRxiv.

[11]  D. Fremont,et al.  Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization , 2020, bioRxiv.

[12]  J. Bloom,et al.  Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020 , 2020, medRxiv.

[13]  Vineet D. Menachery,et al.  Spike mutation D614G alters SARS-CoV-2 fitness , 2020, Nature.

[14]  C. Rice,et al.  Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants , 2020, bioRxiv.

[15]  D. Montefiore Decision letter: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants , 2020 .

[16]  G. Atwal,et al.  REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters , 2020, Science.

[17]  H. Virgin,et al.  Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection , 2020, Nature.

[18]  Samuel J. Hinshaw,et al.  LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection , 2020, bioRxiv.

[19]  M. Beltramello,et al.  Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms , 2020, Science.

[20]  Nan Wang,et al.  A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2 , 2020, bioRxiv.

[21]  M. Beltramello,et al.  Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology , 2020, Cell.

[22]  Pardis C Sabeti,et al.  Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant , 2020, Cell.

[23]  Benjamin P. Kellman,et al.  SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2 , 2020, Cell.

[24]  Sarah K. Hilton,et al.  Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition , 2020, bioRxiv.

[25]  V. Shinde,et al.  Phase 1–2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine , 2020, The New England journal of medicine.

[26]  Anthony P. West,et al.  Structural classification of neutralizing antibodies against the SARS-CoV-2 spike receptor-binding domain suggests vaccine and therapeutic strategies , 2020, bioRxiv.

[27]  Lisa E. Gralinski,et al.  A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2 , 2020, Cell.

[28]  Lisa E. Gralinski,et al.  Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2 , 2020, Cell.

[29]  Sarah K. Hilton,et al.  Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding , 2020, Cell.

[30]  A. Bernardi,et al.  DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist , 2020, bioRxiv.

[31]  A. Walls,et al.  Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation , 2020, Nature Structural & Molecular Biology.

[32]  J. Mascola,et al.  SARS-CoV-2 mRNA Vaccine Design Enabled by Prototype Pathogen Preparedness , 2020, Nature.

[33]  Rebecca J. Loomis,et al.  Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates , 2020, The New England journal of medicine.

[34]  D. Lauffenburger,et al.  Single-Shot Ad26 Vaccine Protects Against SARS-CoV-2 in Rhesus Macaques , 2020, Nature.

[35]  J. Sodroski,et al.  Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike , 2020, Nature.

[36]  M. Müller,et al.  Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2 , 2020, Nature.

[37]  H. Feldmann,et al.  An alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates , 2020, Science Translational Medicine.

[38]  Xuguang Li,et al.  The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity , 2020, Cell.

[39]  Lisa E. Gralinski,et al.  Potently neutralizing and protective human antibodies against SARS-CoV-2 , 2020, Nature.

[40]  J. Skehel,et al.  SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects , 2020, Nature Structural & Molecular Biology.

[41]  Pardis C Sabeti,et al.  Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant , 2020, bioRxiv.

[42]  D. Fremont,et al.  Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2 , 2020, Cell Host & Microbe.

[43]  S. Rowland-Jones,et al.  Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus , 2020, Cell.

[44]  Jesse D. Bloom,et al.  Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding , 2020, bioRxiv.

[45]  D. Burton,et al.  Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model , 2020, Science.

[46]  G. Atwal,et al.  Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies , 2020, Science.

[47]  J. Dye,et al.  Broad neutralization of SARS-related viruses by human monoclonal antibodies , 2020, Science.

[48]  R. Welsh,et al.  Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail , 2020, Science.

[49]  J. Skehel,et al.  Antibody-mediated disruption of the SARS-CoV-2 spike glycoprotein , 2020, Nature Communications.

[50]  D. Matthews,et al.  Neuropilin-1 is a host factor for SARS-CoV-2 infection , 2020, Science.

[51]  D. Fremont,et al.  Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. , 2020, SSRN.

[52]  Amalio Telenti,et al.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody , 2020, Nature.

[53]  A. Molinaro,et al.  Novel ACE2-Independent Carbohydrate-Binding of SARS-CoV-2 Spike Protein to Host Lectins and Lung Microbiota , 2020, bioRxiv.

[54]  L. Stamatatos,et al.  Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual , 2020, bioRxiv.

[55]  M. V. van Breemen,et al.  Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability , 2020, Science.

[56]  F. Gao,et al.  A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 , 2020, Science.

[57]  David I Stuart,et al.  Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike , 2020, bioRxiv.

[58]  Daniel Wrapp,et al.  Site-specific glycan analysis of the SARS-CoV-2 spike , 2020, Science.

[59]  M. Hoffmann,et al.  A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells , 2020, Molecular Cell.

[60]  Lei Liu,et al.  Potent human neutralizing antibodies elicited by SARS-CoV-2 infection , 2020, bioRxiv.

[61]  Frank Grosveld,et al.  A human monoclonal antibody blocking SARS-CoV-2 infection , 2020, Nature Communications.

[62]  A. Walls,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[63]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[64]  M. Letko,et al.  Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses , 2020, Nature Microbiology.

[65]  B. Graham,et al.  Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation , 2020, Science.

[66]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[67]  G. Gao,et al.  A Novel Coronavirus from Patients with Pneumonia in China, 2019 , 2020, The New England journal of medicine.

[68]  Barney S. Graham,et al.  Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD , 2019, Cell Reports.

[69]  D. Veesler,et al.  Structural insights into coronavirus entry , 2019, Advances in Virus Research.

[70]  P. Niu,et al.  Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein , 2019, Nature Communications.

[71]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[72]  A. Walls,et al.  Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion , 2019, Cell.

[73]  Robert J. Fischer,et al.  Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape , 2018, Journal of Virology.

[74]  Wenling Wang,et al.  A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein , 2017, Emerging Microbes &Infections.

[75]  Wenling Wang,et al.  A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein , 2017, Emerging microbes & infections.

[76]  G. Whittaker,et al.  Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection. , 2016, Bio-protocol.

[77]  G. Gao,et al.  The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection , 2016, Vaccine.

[78]  P. Collins,et al.  Structures of complexes formed by H5 influenza hemagglutinin with a potent broadly neutralizing human monoclonal antibody , 2015, Proceedings of the National Academy of Sciences.

[79]  Jaap Goudsmit,et al.  Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants , 2006, PLoS medicine.

[80]  E. Lavelle,et al.  Innate Immune Receptors. , 2016, Methods in molecular biology.