Dynamics of rogue waves in the partially PT-symmetric nonlocal Davey-Stewartson systems

In this work, we study the dynamics of rogue waves in the partially $\cal{PT}$-symmetric nonlocal Davey-Stewartson(DS) systems. Using the Darboux transformation method, general rogue waves in the partially $\cal{PT}$-symmetric nonlocal DS equations are derived. For the partially $\cal{PT}$-symmetric nonlocal DS-I equation, the solutions are obtained and expressed in term of determinants. For the partially $\cal{PT}$-symmetric DS-II equation, the solutions are represented as quasi-Gram determinants. It is shown that the fundamental rogue waves in these two systems are rational solutions which arises from a constant background at $t\rightarrow -\infty$, and develops finite-time singularity on an entire hyperbola in the spatial plane at the critical time. It is also shown that the interaction of several fundamental rogue waves is described by the multi rogue waves. And the interaction of fundamental rogue waves with dark and anti-dark rational travelling waves generates the novel hybrid-pattern waves. However, no high-order rogue waves are found in this partially $\cal{PT}$-symmetric nonlocal DS systems. Instead, it can produce some high-order travelling waves from the high-order rational solutions.

[1]  Yasuhiro Ohta,et al.  Rogue waves in the Davey-Stewartson I equation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. Rao,et al.  Rational and Semirational Solutions of the Nonlocal Davey–Stewartson Equations , 2017, 1704.06792.

[3]  J. Nimmo,et al.  Quasideterminant solutions of a non-Abelian Hirota–Miwa equation , 2007, nlin/0702020.

[4]  J. Nimmo,et al.  Applications of Darboux transformations to the self-dual Yang-Mills equations , 2000 .

[5]  Q. P. Liu,et al.  Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  J. Nimmo,et al.  Quasideterminant solutions of a non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  M. Ablowitz,et al.  Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions , 2016, 1612.02726.

[8]  Jianke Yang,et al.  Partially PT symmetric optical potentials with all-real spectra and soliton families in multidimensions. , 2013, Optics letters.

[9]  I. Gel'fand,et al.  Determinants of matrices over noncommutative rings , 1991 .

[10]  M. Ablowitz,et al.  Integrable nonlocal nonlinear Schrödinger equation. , 2013, Physical review letters.

[11]  A. Khare,et al.  Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations , 2014, 1405.5267.

[12]  Li-yuan Ma,et al.  Integrable nonlocal complex mKdV equation: soliton solution and gauge equivalence , 2016, 1612.06723.

[13]  A. S. Fokas,et al.  Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation , 2016 .

[14]  S. Lou,et al.  Alice-Bob Physics: Coherent Solutions of Nonlocal KdV Systems , 2016, Scientific Reports.

[15]  Zixiang Zhou Darboux Transformations and Global Explicit Solutions for Nonlocal Davey–Stewartson I Equation , 2016, 1612.05689.

[16]  Zuo-Nong Zhu,et al.  Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation , 2017, Commun. Nonlinear Sci. Numer. Simul..

[17]  J. Rao,et al.  Rogue waves of the nonlocal Davey–Stewartson I equation , 2018, Nonlinearity.

[18]  Zi-Xiang Zhou,et al.  Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation , 2016, Commun. Nonlinear Sci. Numer. Simul..

[19]  Francisco Guil,et al.  DARBOUX TRANSFORMATIONS FOR THE DAVEY-STEWARTSON EQUATIONS , 1996 .

[20]  S. Lou Alice-Bob systems, $P_s$-$T_d$-$C$ principles and multi-soliton solutions , 2016, 1603.03975.

[21]  Jianke Yang,et al.  Nonlinear waves in PT -symmetric systems , 2016, 1603.06826.

[22]  Subvarieties in non-compact hyperkaehler manifolds , 2003, math/0312520.

[23]  M. Ablowitz,et al.  Integrable Nonlocal Nonlinear Equations , 2016, 1610.02594.

[24]  Jianke Yang,et al.  Transformations between Nonlocal and Local Integrable Equations , 2017, 1705.00332.

[25]  Yasuhiro Ohta,et al.  Dynamics of rogue waves in the Davey–Stewartson II equation , 2012, 1212.0152.

[26]  Zhenya Yan,et al.  Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: A unified two-parameter model , 2015, Appl. Math. Lett..

[27]  M. Ablowitz,et al.  Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation , 2016 .

[28]  V. Gerdjikov,et al.  Complete integrability of Nonlocal Nonlinear Schr\"odinger equation , 2015, 1510.00480.

[29]  K. Stewartson,et al.  On three-dimensional packets of surface waves , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  Lluis Torner,et al.  Topological States in Partially-PT-Symmetric Azimuthal Potentials. , 2015, Physical review letters.

[31]  Jianke Yang Symmetry breaking of solitons in two-dimensional complex potentials. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  K. W. Chow,et al.  Breathers and rogue waves for a third order nonlocal partial differential equation by a bilinear transformation , 2016, Appl. Math. Lett..

[33]  Carl M. Bender,et al.  Coupled Oscillator Systems Having Partial PT Symmetry , 2015, 1503.05725.

[34]  Liangwei Dong,et al.  Stable vortex solitons in a ring-shaped partially-PT-symmetric potential. , 2016, Optics letters.

[35]  Artyom V. Yurov,et al.  Darboux transforms for Davey-Stewartson equations and solitons in multidimensions , 1992 .

[36]  M. Ablowitz,et al.  Integrable discrete PT symmetric model. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[38]  Zuo-Nong Zhu,et al.  On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions , 2017, Commun. Nonlinear Sci. Numer. Simul..

[39]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .