MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems

This paper discusses the use of probabilistic or randomized algorithms for solving vehicle routing problems with non-smooth objective functions. Our approach employs non-uniform probability distributions to add a biased random behavior to the well-known savings heuristic. By doing so, a large set of alternative good solutions can be quickly obtained in a natural way and without complex configuration processes. Since the solution-generation process is based on the criterion of maximizing the savings, it does not need to assume any particular property of the objective function. Therefore, the procedure can be especially useful in problems where properties such as non-smoothness or non-convexity lead to a highly irregular solution space, for which the traditional optimization methods—both of exact and approximate nature—may fail to reach their full potential. The results obtained so far are promising enough to suggest that the idea of using biased probability distributions to randomize classical heuristics is a powerful one that can be successfully applied in a variety of cases.

[1]  G. Clarke,et al.  Scheduling of Vehicles from a Central Depot to a Number of Delivery Points , 1964 .

[2]  Billy E. Gillett,et al.  A Heuristic Algorithm for the Vehicle-Dispatch Problem , 1974, Oper. Res..

[3]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  Marshall L. Fisher,et al.  A generalized assignment heuristic for vehicle routing , 1981, Networks.

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  Inyong Ham,et al.  A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem , 1983 .

[7]  Alexander Gersht,et al.  Optimal routing in circuit-switched communication networks , 1986, 1986 25th IEEE Conference on Decision and Control.

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[10]  Shokri Z. Selim,et al.  A simulated annealing algorithm for the clustering problem , 1991, Pattern Recognit..

[11]  Gilbert Laporte,et al.  A Tabu Search Heuristic for the Vehicle Routing Problem , 1991 .

[12]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[13]  Ulrich Derigs,et al.  A matching-based approach for solving a delivery/pick-up vehicle routing problem with time constraints , 1992 .

[14]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[15]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[16]  Khaled S. Al-Sultan,et al.  A Tabu search approach to the clustering problem , 1995, Pattern Recognit..

[17]  Jonathan F. Bard,et al.  A GRASP for the Vehicle Routing Problem with Time Windows , 1995, INFORMS J. Comput..

[18]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[19]  Hong-Tzer Yang,et al.  Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions , 1996 .

[20]  John L. Bresina,et al.  Heuristic-Biased Stochastic Sampling , 1996, AAAI/IAAI, Vol. 1.

[21]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[22]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[23]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[24]  Fred W. Glover,et al.  Solving zero-one mixed integer programming problems using tabu search , 1998, European Journal of Operational Research.

[25]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[26]  Richard F. Hartl,et al.  An improved Ant System algorithm for theVehicle Routing Problem , 1999, Ann. Oper. Res..

[27]  Fred Glover,et al.  Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory , 1999, INFORMS J. Comput..

[28]  van der,et al.  Proceedings of the 2012 winter simulation conference , 2001, WSC 2008.

[29]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[30]  Zvi Drezner,et al.  Facility location - applications and theory , 2001 .

[31]  Christos D. Tarantilis,et al.  BoneRoute: An Adaptive Memory-Based Method for Effective Fleet Management , 2002, Ann. Oper. Res..

[32]  Barrie M. Baker,et al.  A Grasp Interactive Approach to the Vehicle Routing Problem with Backhauls , 2002 .

[33]  Michel Gendreau,et al.  A guide to vehicle routing heuristics , 2002, J. Oper. Res. Soc..

[34]  C. Ribeiro,et al.  Essays and Surveys in Metaheuristics , 2002, Operations Research/Computer Science Interfaces Series.

[35]  Albert P. M. Wagelmans,et al.  A savings based method for real-life vehicle routing problems , 1999, J. Oper. Res. Soc..

[36]  M.E. El-Hawary,et al.  Hopfield-genetic approach for solving the routing problem in computer networks , 2002, IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373).

[37]  Mauricio G. C. Resende,et al.  Grasp: An Annotated Bibliography , 2002 .

[38]  Paolo Toth,et al.  Models, relaxations and exact approaches for the capacitated vehicle routing problem , 2002, Discret. Appl. Math..

[39]  Mihail L. Sichitiu,et al.  Localization in Wireless Sensor Networks: A Probabilistic Approach , 2003, International Conference on Wireless Networks.

[40]  Helena Ramalhinho Dias Lourenço,et al.  Strategies for an Integrated Distribution Problem , 2003 .

[41]  W. Art Chaovalitwongse,et al.  GRASP with a New Local Search Scheme for Vehicle Routing Problems with Time Windows , 2003, J. Comb. Optim..

[42]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[43]  Joong-Rin Shin,et al.  A particle swarm optimization for economic dispatch with nonsmooth cost functions , 2005, IEEE Transactions on Power Systems.

[44]  Tore Grünert,et al.  Local Search for Vehicle Routing and Scheduling Problems: Review and Conceptual Integration , 2005, J. Heuristics.

[45]  Michel Gendreau,et al.  New Heuristics for the Vehicle Routing Problem , 2005 .

[46]  André Langevin,et al.  Logistics systems : design and optimization , 2005 .

[47]  Toshihide Ibaraki,et al.  The vehicle routing problem with flexible time windows and traveling times , 2006, Discret. Appl. Math..

[48]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[49]  B. Suman,et al.  A survey of simulated annealing as a tool for single and multiobjective optimization , 2006, J. Oper. Res. Soc..

[50]  Adil M. Bagirov,et al.  A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems , 2006, Eur. J. Oper. Res..

[51]  Jean-Philippe Rennard,et al.  Handbook of Research on Nature-inspired Computing for Economics and Management , 2006 .

[52]  David Pisinger,et al.  A general heuristic for vehicle routing problems , 2007, Comput. Oper. Res..

[53]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[54]  Colin R. Reeves,et al.  Evolutionary computation: a unified approach , 2007, Genetic Programming and Evolvable Machines.

[55]  Samuel Labi,et al.  Transportation Decision Making: Principles of Project Evaluation and Programming , 2007 .

[56]  Rubén Ruiz,et al.  Local Search in Complex Scheduling Problems , 2007, SLS.

[57]  Jean-Philippe Rennard,et al.  Stochastic Optimization Algorithms , 2007, ArXiv.

[58]  Suh-Wen Chiou A non-smooth optimization model for a two-tiered supply chain network , 2007, Inf. Sci..

[59]  Olli Bräysy,et al.  Active-guided evolution strategies for large-scale capacitated vehicle routing problems , 2007, Comput. Oper. Res..

[60]  Temel Öncan,et al.  A Survey of the Generalized Assignment Problem and Its Applications , 2007, INFOR Inf. Syst. Oper. Res..

[61]  Pierre Hansen,et al.  The p-median problem: A survey of metaheuristic approaches , 2005, Eur. J. Oper. Res..

[62]  D.T.H. Lai,et al.  A nonsmooth optimization approach to sensor network localization , 2007, 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information.

[63]  Nicolas Jozefowiez,et al.  The vehicle routing problem: Latest advances and new challenges , 2007 .

[64]  M. Resende Metaheuristic Hybridization with Greedy Randomized Adaptive Search Procedures , 2008 .

[65]  Angel A. Juan,et al.  SR-1: A simulation-based algorithm for the Capacitated Vehicle Routing Problem , 2008, 2008 Winter Simulation Conference.

[66]  Goos Kant,et al.  Coca-Cola Enterprises Optimizes Vehicle Routes for Efficient Product Delivery , 2008, Interfaces.

[67]  Suh-Wen Chiou A non-smooth model for signalized road network design problems , 2008 .

[68]  Angel A. Juan,et al.  The ALGACEA-1 method for the capacitated vehicle routing problem , 2008, Int. Trans. Oper. Res..

[69]  Shih-Wei Lin,et al.  Applying hybrid meta-heuristics for capacitated vehicle routing problem , 2009, Expert Syst. Appl..

[70]  John W. Chinneck,et al.  Operations Research and Cyber-Infrastructure , 2009 .

[71]  Angel A. Juan,et al.  Using Oriented Random Search to Provide a Set of Alternative Solutions to the Capacitated Vehicle Routing Problem , 2009 .

[72]  Mauricio G. C. Resende,et al.  An Annotated Bibliography of Grasp Part I: Algorithms , 2022 .

[73]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[74]  Thomas Stützle,et al.  Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics, Second International Workshop, SLS 2009, Brussels, Belgium, September 3-4, 2009. Proceedings , 2009, SLS.

[75]  Julio R. Banga,et al.  Extended ant colony optimization for non-convex mixed integer nonlinear programming , 2009, Comput. Oper. Res..

[76]  Mauricio G. C. Resende,et al.  An Annotated Bibliography of Grasp Part Ii: Applications , 2022 .

[77]  Gilbert Laporte,et al.  Fifty Years of Vehicle Routing , 2009, Transp. Sci..

[78]  Thanatchai Kulworawanichpong,et al.  Tabu Search Approach to Solve Routing Issues in Communication Networks , 2009 .

[79]  Jean-Yves Potvin,et al.  State-of-the Art Review - Evolutionary Algorithms for Vehicle Routing , 2009, INFORMS J. Comput..

[80]  Inge Norstad,et al.  Reducing fuel emissions by optimizing speed on shipping routes , 2010, J. Oper. Res. Soc..

[81]  Ulrich Derigs,et al.  Local search-based metaheuristics for the split delivery vehicle routing problem , 2010, J. Oper. Res. Soc..

[82]  Patrick Lyonnet,et al.  A new heuristic approach for non-convex optimization problems , 2010, Inf. Sci..

[83]  Luiz Antonio Nogueira Lorena,et al.  Clustering search algorithm for the capacitated centered clustering problem , 2010, Comput. Oper. Res..

[84]  Sishaj P. Simon,et al.  Artificial Bee Colony Algorithm for Economic Load Dispatch Problem with Non-smooth Cost Functions , 2010 .

[85]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures: Advances, Hybridizations, and Applications , 2010 .

[86]  Hossein Nezamabadi-pour,et al.  A modified particle swarm optimization for economic dispatch with non-smooth cost functions , 2010, Eng. Appl. Artif. Intell..

[87]  S. Ilker Birbil,et al.  Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems , 2010, INFORMS J. Comput..

[88]  Teodor Gabriel Crainic,et al.  Minimizing greenhouse gas emissions in intermodal freight transport: an application to rail service design , 2010, J. Oper. Res. Soc..

[89]  Thomas Stützle,et al.  Ant Colony Optimization: Overview and Recent Advances , 2018, Handbook of Metaheuristics.

[90]  T. Stützle,et al.  Iterated Local Search: Framework and Applications , 2018, Handbook of Metaheuristics.

[91]  Angel A. Juan,et al.  On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics , 2011, J. Oper. Res. Soc..

[92]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[93]  Angel A. Juan,et al.  Hybrid Algorithms for Service, Computing and Manufacturing Systems: Routing and Scheduling Solutions , 2011 .

[94]  I-Tung Yang,et al.  Multiobjective optimization for manpower assignment in consulting engineering firms , 2011, Appl. Soft Comput..

[95]  M. Figliozzi The impacts of congestion on time-definitive urban freight distribution networks CO2 emission levels: Results from a case study in Portland, Oregon , 2011 .

[96]  K. Vaisakh,et al.  Genetic evolving ant direction HDE for OPF with non-smooth cost functions and statistical analysis , 2011, Expert Syst. Appl..

[97]  Celso C. Ribeiro,et al.  Tutorials in Operations Research , 2012, Int. Trans. Oper. Res..

[98]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[99]  Xiaolei Ma,et al.  Vehicle Routing Problem , 2013 .

[100]  Abdel Nasser,et al.  A Survey of the Quadratic Assignment Problem , 2014 .