Pseudomonas putida: a cosmopolitan opportunist par excellence.

[1]  B. Galán,et al.  Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. , 2000, Environmental microbiology.

[2]  K. Timmis,et al.  Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[3]  V. de Lorenzo,et al.  Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria , 1990, Journal of bacteriology.

[4]  R. Kolter,et al.  Root colonization by Pseudomonas putida: love at first sight. , 2002, Microbiology.

[5]  K. Timmis,et al.  Vector for regulated expression of cloned genes in a wide range of gram-negative bacteria , 1986, Journal of bacteriology.

[6]  K. Timmis,et al.  Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad , 1997, Nature Biotechnology.

[7]  J. Ramos,et al.  Combined Physical and Genetic Map of the Pseudomonas putida KT2440 Chromosome , 1998 .

[8]  K. Timmis,et al.  Restricting the Dispersal of Recombinant DNA: Design of a Contained Biological Catalyst , 1996, Bio/Technology.

[9]  K. Timmis,et al.  Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. , 1981, Gene.

[10]  V. de Lorenzo,et al.  Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria , 1990, Journal of bacteriology.

[11]  A. Chakrabarty,et al.  A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[12]  K. Timmis,et al.  Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. , 1987, Science.

[13]  O. White,et al.  Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. , 2002, Environmental microbiology.

[14]  Eduardo Diaz,et al.  Universal barrier to lateral spread of specific genes among microorganisms , 1994, Molecular microbiology.

[15]  K. Timmis,et al.  Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. , 1987, Science.

[16]  M G Wubbolts,et al.  Biotransformation of substituted benzoates to the corresponding cis-diols by an engineered strain of Pseudomonas oleovorans producing the TOL plasmid-specified enzyme toluate-1,2-dioxygenase , 1990, Applied and environmental microbiology.

[17]  Ana Segura,et al.  Mechanisms of solvent tolerance in gram-negative bacteria. , 2002, Annual review of microbiology.

[18]  T. Nakazawa Travels of a Pseudomonas, from Japan around the world. , 2002, Environmental microbiology.

[19]  Eduardo Díaz,et al.  Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. , 2002, Environmental microbiology.

[20]  N. Dunn,et al.  Transmissible Plasmid Coding Early Enzymes of Naphthalene Oxidation in Pseudomonas putida , 1973, Journal of bacteriology.

[21]  P. Williams,et al.  Metabolism of Benzoate and the Methylbenzoates by Pseudomonas putida (arvilla) mt-2: Evidence for the Existence of a TOL Plasmid , 1974, Journal of bacteriology.