Thermal stability of the magnetization following thermomagnetic writing in perpendicular media

The thermal decay of the magnetization in granular thin films with high perpendicular anisotropy following thermomagnetic writing is investigated using a semianalytical and a numerical mean-field self-consistent model. We study the effects of cooling rate, dispersions in grain volumes and anisotropy fields, damping, and intergranular interactions. Two distinct contributions to the thermal decay arise from cooling and storage, respectively. The magnetization freezes during cooling as a result of the increase in anisotropy and the net thermal decay for slow cooling is logarithmically dependent on the time before the magnetization is frozen. The areal density advantage of heat-assisted, over conventional magnetic recording increases sharply when the thermal decay starts close to the Curie temperature. The maximum benefits of heat-assisted recording using FePt media are derived by heating above the Curie temperature.

[1]  R. L. Weber,et al.  The Physical Principles of Magnetism , 1967 .

[2]  F. W. Kellaway,et al.  Advanced Engineering Mathematics , 1969, The Mathematical Gazette.

[3]  S. R. Cumpson,et al.  A hybrid recording method using thermally assisted writing and flux sensitive detection , 2000 .

[4]  E. Wohlfarth,et al.  Rate Dependence of the Field-Cooled Magnetisation of a Fine Particle System† , 1985 .

[5]  K. Binder,et al.  Monte Carlo calculation of the magnetization of superparamagnetic particles , 1969 .

[6]  H. Bertram,et al.  Reversal field versus pulse time: theoretical and experimental comparison , 2000 .

[7]  William H. Press,et al.  Numerical recipes , 1990 .

[8]  J. Hoinville Micromagnetic modeling of the thermomagnetic recording process , 2001 .

[9]  H. Callen,et al.  The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+1)2 power law , 1966 .

[10]  Jacobus Josephus Maria Ruigrok,et al.  Disk recording beyond 100 Gb/in.2 : hybrid recording? (invited) , 2000 .

[11]  Takao Suzuki,et al.  Relaxation time and thermal stability in magneto-optical recording media , 2000 .

[12]  Jaap Ruigrok,et al.  Limits of conventional and thermally-assisted recording , 2001 .

[13]  Margaret Evans Best,et al.  High K/sub u/ materials approach to 100 Gbits/in/sup 2/ , 2000 .

[14]  J. Lodder,et al.  Magnetic viscosity in perpendicular media , 1991 .

[15]  H. Bertram,et al.  Dynamic-thermal effects in thin film media , 2001 .

[16]  T. Miyazaki,et al.  Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films , 2002 .

[17]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[18]  Koki Takanashi,et al.  Preparation and magnetic properties of highly coercive FePt films , 2002 .

[19]  Masud Mansuripur,et al.  The Physical Principles of Magneto-optical Recording , 1995 .

[20]  Ganping Ju,et al.  Micromagnetic study of subnanosecond magnetic switching in perpendicular multilayers , 2002 .

[21]  Inaba,et al.  Damping constants of Co-Cr-Ta and Co-Cr-Pt thin films , 1997 .

[22]  Kelly,et al.  Magnetocrystalline anisotropy and orbital moments in transition-metal compounds. , 1991, Physical review. B, Condensed matter.

[23]  N. Akulov Zur Quantentheorie der Temperaturabhängigkeit der Magnetisierungskurve , 1936 .

[24]  Michael F. Toney,et al.  Temperature dependent magnetic properties of highly chemically ordered Fe55−xNixPt45L10 films , 2002 .

[25]  G. Hadjipanayis,et al.  Magnetic storage systems beyond 2000 , 2001 .

[26]  H. Neal Bertram,et al.  Theory of Magnetic Recording , 1994 .

[27]  H. Bertram,et al.  Micromagnetic analysis of the effect of intergranular exchange on thermal stability in magnetic recording. III. Perpendicular media , 2002 .