On the manifestation of electron-electron interactions in the thermoelectric response of semicrystalline conjugated polymers with low energetic disorder

[1]  G. J. Snyder,et al.  Charge-transport model for conducting polymers , 2017 .

[2]  Joshua H. Carpenter,et al.  Coulomb Enhanced Charge Transport in Semicrystalline Polymer Semiconductors , 2016 .

[3]  Sonya A. Mollinger,et al.  Dual‐Characteristic Transistors Based on Semiconducting Polymer Blends , 2016 .

[4]  Rachel A. Segalman,et al.  Organic thermoelectric materials for energy harvesting and temperature control , 2016, Nature Reviews Materials.

[5]  Yunqi Liu,et al.  Design of High‐Mobility Diketopyrrolopyrrole‐Based π‐Conjugated Copolymers for Organic Thin‐Film Transistors , 2015, Advanced materials.

[6]  Ling Li,et al.  Universal carrier thermoelectric-transport model based on percolation theory in organic semiconductors , 2015 .

[7]  M. Chabinyc,et al.  Impact of the Doping Method on Conductivity and Thermopower in Semiconducting Polythiophenes , 2015 .

[8]  David Beljonne,et al.  Approaching disorder-free transport in high-mobility conjugated polymers , 2014, Nature.

[9]  B. Collins,et al.  The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer. , 2014, Journal of the American Chemical Society.

[10]  H. Sirringhaus,et al.  Field-effect modulated Seebeck coefficient measurements in an organic polymer using a microfabricated on-chip architecture , 2014 .

[11]  H. Sirringhaus,et al.  Simultaneous extraction of charge density dependent mobility and variable contact resistance from thin film transistors , 2014, 1402.5241.

[12]  H. Sirringhaus 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon , 2014, Advanced materials.

[13]  Haydyn D. T. Mertens,et al.  A low-background-intensity focusing small-angle X-ray scattering undulator beamline , 2013 .

[14]  M. Toney,et al.  A general relationship between disorder, aggregation and charge transport in conjugated polymers. , 2013, Nature materials.

[15]  H. Sirringhaus,et al.  Two-Dimensional Carrier Distribution in Top-Gate Polymer Field-Effect Transistors: Correlation between Width of Density of Localized States and Urbach Energy , 2013, Advanced materials.

[16]  A. Facchetti,et al.  Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology. , 2012, Journal of the American Chemical Society.

[17]  Kevin P. Pipe,et al.  Thermoelectric model to characterize carrier transport in organic semiconductors , 2012 .

[18]  Jan Ilavsky,et al.  Nika : software for two-dimensional data reduction , 2012 .

[19]  H. Sirringhaus,et al.  Very Low Degree of Energetic Disorder as the Origin of High Mobility in an n‐channel Polymer Semiconductor , 2011 .

[20]  M. Toney,et al.  Drastic Control of Texture in a High Performance n-Type Polymeric Semiconductor and Implications for Charge Transport , 2011 .

[21]  Alberto Salleo,et al.  Unconventional Face‐On Texture and Exceptional In‐Plane Order of a High Mobility n‐Type Polymer , 2010, Advanced materials.

[22]  H. Sirringhaus,et al.  Conjugated‐Polymer‐Based Lateral Heterostructures Defined by High‐Resolution Photolithography , 2010 .

[23]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[24]  H. Sirringhaus,et al.  Relative importance of polaron activation and disorder on charge transport in high-mobility conjugated polymer field-effect transistors , 2007 .

[25]  P. Heremans,et al.  Analytic model of hopping mobility at large charge carrier concentrations in disordered organic semiconductors: Polarons versus bare charge carriers , 2007 .

[26]  P. Blom,et al.  Unified description of charge-carrier mobilities in disordered semiconducting polymers. , 2005, Physical review letters.

[27]  Paul Heremans,et al.  Charge carrier mobility in doped semiconducting polymers , 2003 .

[28]  Janos Veres,et al.  Low‐k Insulators as the Choice of Dielectrics in Organic Field‐Effect Transistors , 2003 .

[29]  V. Arkhipov,et al.  Effective transport energy versus the energy of most probable jumps in disordered hopping systems , 2001 .

[30]  N. V. Lien,et al.  Coulomb correlation effects in variable-range hopping thermopower , 1999 .

[31]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry theory and experiment , 1997 .

[32]  Emin Pair breaking in semiclassical singlet small-bipolaron hopping. , 1996, Physical review. B, Condensed matter.

[33]  M. Green Intrinsic concentration, effective densities of states, and effective mass in silicon , 1990 .

[34]  N. Mott The mobility edge since 1967 , 1987 .

[35]  P. Chaikin,et al.  Interaction effects and thermoelectric power in low-temperature hopping , 1985 .

[36]  G. Beni,et al.  Thermopower in the correlated hopping regime , 1976 .

[37]  D. Emin Phonon-assisted transition rates I. Optical-phonon-assisted hopping in solids , 1975 .

[38]  G. Beni Thermoelectric power of the narrow-band Hubbard chain at arbitrary electron density: Atomic limit , 1974 .

[39]  D. Emin Phonon-Assisted Jump Rate in Noncrystalline Solids , 1974 .

[40]  H. Fritzsche A general expression for the thermoelectric power , 1971 .

[41]  Vinay Ambegaokar,et al.  Hopping Conductivity in Disordered Systems , 1971 .

[42]  E. Abrahams,et al.  Impurity Conduction at Low Concentrations , 1960 .

[43]  D. Emin フォノン関与遷移速度 I 固体中の光‐フォノン関与ホッピング , 1975 .

[44]  A. A. Mullin,et al.  Thermoelectricity: Science and Engineering , 1962 .

[45]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .