Phase-space dynamics of runaway electrons in magnetic fields

Dynamics of runaway electrons in magnetic fields are governed by the competition of three dominant physics: parallel electric field acceleration, Coulomb collision, and synchrotron radiation. Examination of the energy and pitch-angle flows reveals that the presence of local vortex structure and global circulation is crucial to the saturation of primary runaway electrons. Models for the vortex structure, which has an O-point to X-point connection, and the bump of runaway electron distribution in energy space have been developed and compared against the simulation data. Identification of these velocity-space structures opens a new venue to re-examine the conventional understanding of runaway electron dynamics in magnetic fields.

[1]  P. N. Bhat,et al.  TOWARD A BETTER UNDERSTANDING OF THE GRB PHENOMENON: A NEW MODEL FOR GRB PROMPT EMISSION AND ITS EFFECTS ON THE NEW LiNT– Epeak,irest,NT RELATION , 2015, 1501.07028.

[2]  Jose Ramon Martin-Solis,et al.  Momentum–space structure of relativistic runaway electrons , 1998 .

[3]  M. Landreman,et al.  Synchrotron radiation from runaway electron distributions in tokamaks , 2013, 1308.2099.

[4]  Tünde Fülöp,et al.  Runaway electron drift orbits in magnetostatic perturbed fields , 2011 .

[5]  R. Kulsrud,et al.  Runaway electrons in a plasma , 1973 .

[6]  Allen H. Boozer,et al.  Adjoint Fokker-Planck equation and runaway electron dynamics , 2015, 1509.04402.

[7]  W. Pauli,et al.  Theory Of Relativity , 1959 .

[8]  Y. Kamada,et al.  Role of bremsstrahlung radiation in limiting the energy of runaway electrons in tokamaks. , 2005, Physical review letters.

[9]  J. Manickam,et al.  Chapter 3: MHD stability, operational limits and disruptions , 2007 .

[10]  P. Aleynikov,et al.  Theory of two threshold fields for relativistic runaway electrons. , 2015, Physical review letters.

[11]  M. Temmer,et al.  An Observational Overview of Solar Flares , 2011, 1109.5932.

[12]  F. Andersson,et al.  Damping of relativistic electron beams by synchrotron radiation , 2001 .

[13]  J. Wesley,et al.  Growth and decay of runaway electrons above the critical electric field under quiescent conditions , 2014 .

[14]  M. Rosenbluth,et al.  Theory for avalanche of runaway electrons in tokamaks , 1997 .

[15]  Charles F. F. Karney,et al.  Efficiency of current drive by fast waves , 2005, physics/0501058.

[16]  J. W. Connor,et al.  Relativistic limitations on runaway electrons , 1975 .

[17]  T. Piran The physics of gamma-ray bursts , 2004, astro-ph/0405503.

[18]  Alain J. Brizard,et al.  Relativistic bounce-averaged quasilinear diffusion equation for low-frequency electromagnetic fluctuations , 2001 .

[19]  J. Decker,et al.  Radiation reaction induced non-monotonic features in runaway electron distributions , 2015, Journal of Plasma Physics.

[20]  J. Decker,et al.  Effective critical electric field for runaway-electron generation. , 2014, Physical review letters.

[21]  H. Dreicer,et al.  Electron and Ion Runaway in a Fully Ionized Gas. I , 1959 .

[22]  T. Fülöp,et al.  Magnetic field threshold for runaway generation in tokamak disruptions , 2009 .

[23]  G. M. Milikh,et al.  Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm , 1992 .

[24]  Allen H. Boozer,et al.  Theory of runaway electrons in ITER: Equations, important parameters, and implications for mitigation , 2015 .

[25]  M. N. A. Beurskens,et al.  JET ITER-like wall—overview and experimental programme , 2011 .

[26]  Yves Peysson,et al.  Numerical characterization of bump formation in the runaway electron tail , 2016 .