The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model

The Charge Distribution MUltiSite Ion Complexation or CD–MUSIC modeling approach is used to describe the chemical structure of carbonate mineral-aqueous solution interfaces. The new model extends existing surface complexation models of carbonate minerals, by including atomic scale information on the surface lattice and the adsorbed water layer. In principle, the model can account for variable proportions of face, edge and kink sites exposed at the mineral surface, and for the formation of inner- and outer-sphere surface complexes. The model is used to simulate the development of surface charges and surface potentials on divalent carbonate minerals as a function of the aqueous solution composition. A comparison of experimental data and model output indicates that the large variability in the observed pH trends of the surface potential for calcite may in part reflect variable degrees of thermodynamic disequilibrium between mineral, solution and, when present, gas phase during the experiments. Sample preparation and non-stoichiometric surfaces may introduce further artifacts that complicate the interpretation of electrokinetic and surface titration measurements carried out with carbonate mineral suspensions. The experimental artifacts, together with the high sensitivity of the model toward parameters describing hydrogen bridging and bond lengths at the mineral-water interface, currently limit the predictive application of the proposed CD–MUSIC model. The results of this study emphasize the need for internally consistent experimental data sets obtained with well-characterized mineral surfaces and in situ aqueous solution compositions (that is, determined during the charge or potential measurements), as well as for further molecular dynamic simulations of the carbonate mineral-water interface to better constrain the bond lengths and the number plus valence contribution of hydrogen bridges associated with different structural surface sites.

[1]  P. Dove,et al.  The role of Mg2+ as an impurity in calcite growth. , 2000, Science.

[2]  S. Martin,et al.  Dissolution rates and pit morphologies of rhombohedral carbonate minerals , 2004 .

[3]  John O’M. Bockris,et al.  Surface Electrochemistry: A Molecular Level Approach , 1993 .

[4]  D. E. Yates,et al.  Site-binding model of the electrical double layer at the oxide/water interface , 1974 .

[5]  D. Rickard,et al.  Mixed kinetic control of calcite dissolution rates , 1983 .

[6]  John W. Morse,et al.  Geochemistry of Sedimentary Carbonates , 1990 .

[7]  T. Hiemstra,et al.  A surface structural approach to ion adsorption : The charge distribution (CD) model , 1996 .

[8]  M. Engelhard,et al.  Structure of the cleaved CaCO3(101̄4) surface in an aqueous environment , 1996 .

[9]  E. Maier‐Reimer,et al.  Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration , 1994, Nature.

[10]  Guntram Jordan,et al.  Dissolution Rates of Calcite (104) Obtained by Scanning Force Microscopy: Microtopography-Based Dissolution Kinetics on Surfaces with Anisotropic Step Velocities , 1998 .

[11]  M. Hochella,et al.  Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) , 1991 .

[12]  Nita Sahai,et al.  A model of surface site types on oxide and silicate minerals based on crystal chemistry; implications for site types and densities, multi-site adsorption, surface infrared spectroscopy, and dissolution kinetics , 1998 .

[13]  A. Wierzbicki,et al.  Formation of chiral morphologies through selective binding of amino acids to calcite surface steps , 2001, Nature.

[14]  Venema,et al.  Intrinsic Proton Affinity of Reactive Surface Groups of Metal (Hydr)oxides: The Bond Valence Principle , 1996, Journal of colloid and interface science.

[15]  S. C. Parker,et al.  Surface Structure and Morphology of Calcium Carbonate Polymorphs Calcite, Aragonite, and Vaterite: An Atomistic Approach , 1998 .

[16]  O. Pokrovsky,et al.  Surface chemistry and dissolution kinetics of divalent metal carbonates. , 2002, Environmental science & technology.

[17]  A. Mucci,et al.  A Continuous and Mechanistic Representation of Calcite Reaction-Controlled Kinetics in Dilute Solutions at 25°C and 1 Atm Total Pressure , 1995 .

[18]  E. Bylaska,et al.  Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects , 2006 .

[19]  S. C. Parker,et al.  Free energy of adsorption of water and calcium on the [10 1 4] calcite surface. , 2004, Chemical communications.

[20]  Paul D. Siders,et al.  Molecular Hartree–Fock model of calcium carbonate , 1997 .

[21]  Pradip,et al.  The surface chemistry of bastnaesite, barite and calcite in aqueous carbonate solutions , 1992 .

[22]  A. Mucci,et al.  A continuous and mechanistic representation of calcite reaction-controlled kinetics in dilute solutions at 25°C and 1 atm total pressure , 1995 .

[23]  S. Mishra The electrokinetics of apatite and calcite in inorganic electrolyte environment , 1978 .

[24]  G. A. Parks,et al.  XAFS and Bond-Valence Determination of the Structures and Compositions of Surface Functional Groups and Pb(II) and Co(II) Sorption Products on Single-Crystal alpha-Al2O3 , 1997, Journal of colloid and interface science.

[25]  P. Brady,et al.  Surface complexation clues to dolomite growth , 1996 .

[26]  R. Reeder,et al.  Arsenate uptake by calcite: Macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms , 2007 .

[27]  C. Eggleston,et al.  Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy (AFM) , 1994 .

[28]  S. Martin,et al.  Surface-potential heterogeneity of reacted calcite and rhodochrosite. , 2007, Environmental science & technology.

[29]  J. Amonette,et al.  Magnesium inhibition of calcite dissolution kinetics , 2006 .

[30]  O. Pokrovsky,et al.  Surface speciation models of calcite and dolomite/aqueous solution interfaces and their spectroscopic evaluation , 2000 .

[31]  S. C. Parker,et al.  Atomistic Simulation of the Dissociative Adsorption of Water on Calcite Surfaces , 2003 .

[32]  D. Eggett,et al.  Bond-valence methods for pKa prediction: critical reanalysis and a new approach , 2004 .

[33]  J. A. Davis,et al.  Surface complexation modeling in aqueous geochemistry , 1990 .

[34]  James A. Davis,et al.  Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions , 1978 .

[35]  O. Ozcan,et al.  Electrokinetic, infrared and flotation studies of scheelite and calcite with oxine, alkyl oxine, oleoyl sarcosine and quebracho , 1993 .

[36]  T. Hiemstra,et al.  On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. , 2006, Journal of colloid and interface science.

[37]  Garrison Sposito,et al.  The surface chemistry of soils , 1984 .

[38]  L. Charlet,et al.  A surface complexation model of the carbonate mineral-aqueous solution interface , 1993 .

[39]  D. Siffert,et al.  Parameters affecting the sign and magnitude of the eletrokinetic potential of calcite , 1984 .

[40]  R. Jahnke,et al.  Calcium carbonate dissolution in deep sea sediments: reconciling microelectrode, pore water and benthic flux chamber results , 2004 .

[41]  L. N. Plummer,et al.  The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O , 1982 .

[42]  P. Hansma,et al.  Atomic-scale imaging of calcite growth and dissolution in real time , 1992 .

[43]  J. Gale,et al.  Atomistic models of carbonate minerals: Bulk and surface structures, defects, and diffusion , 2002 .

[44]  H. Roques,et al.  Zeta potential measurement of calcium carbonate. , 2003, Journal of colloid and interface science.

[45]  P. Hansma,et al.  Step dynamics and spiral growth on calcite , 1993 .

[46]  E. Chibowski,et al.  Influence of sodium dodecyl sulfate and static magnetic field on the properties of freshly precipitated calcium carbonate. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[47]  J. Wit,et al.  Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach: II. Application to various important (hydr)oxides , 1989 .

[48]  T. Foxall,et al.  Charge determination at calcium salt/aqueous solution interface , 1979 .

[49]  M. C. Gorr,et al.  An atomic force microscope (AFM) study of the calcite cleavage plane: Image averaging in Fourier space , 1992 .

[50]  J. Zemann,et al.  Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates , 1981 .

[51]  D. Sverjensky Prediction of surface charge on oxides in salt solutions: Revisions for 1:1 (M+L−) electrolytes , 2005 .

[52]  J. Webb,et al.  Distribution of trace elements between carbonate minerals and aqueous solutions , 1998 .

[53]  Scot T. Martin,et al.  Connections between surface complexation and geometric models of mineral dissolution investigated for rhodochrosite , 2003 .

[54]  D. Cicerone,et al.  Electrokinetic properties of the calcite/water interface in the presence of magnesium and organic matter , 1992 .

[55]  E. DiMasi,et al.  Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity , 2000 .

[56]  J. Persello,et al.  CALCIUM AS POTENTIAL DETERMINING ION IN AQUEOUS CALCITE SUSPENSIONS , 1990 .

[57]  S. L. S. Srrpp,et al.  The dynamic nature of calcite surfaces in air , 2007 .

[58]  Ryoji Shiraki,et al.  Dissolution Kinetics of Calcite in 0.1 M NaCl Solution at Room Temperature: An Atomic Force Microscopic (AFM) Study , 2000 .

[59]  L. Charlet,et al.  Aqueous cadmium uptake by calcite: a stirred flow-through reactor study ☆ , 2003 .

[60]  J. Rosenholm,et al.  The calcite/water interface I. Surface charge in indifferent electrolyte media and the influence of low-molecular-weight polyelectrolyte. , 2007, Journal of colloid and interface science.

[61]  G. Giudici Surface control vs. diffusion control during calcite dissolution: Dependence of step-edge velocity upon solution pH , 2002 .

[62]  J. Amonette,et al.  Microscopic effects of carbonate, manganese, and strontium ions on calcite dissolution , 2001 .

[63]  D. Tao,et al.  Effect of solution chemistry on flotability of magnesite and dolomite , 2004 .

[64]  P. Somasundaran,et al.  Role of biopolymers on bacterial adhesion and mineral beneficiation , 2005 .

[65]  P. Dove,et al.  Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws , 2000 .

[66]  N. Sturchio,et al.  In-situ synchrotron X-ray reflectivity measurements at the calcite-water interface , 1993 .

[67]  P. Dove,et al.  Reversed calcite morphologies induced by microscopic growth kinetics: Insight into biomineralization , 1999 .

[68]  S. C. Parker,et al.  Atomistic simulation of the differences between calcite and dolomite surfaces , 1998 .

[69]  S. Brantley,et al.  Dissolution kinetics of strained calcite , 1989 .

[70]  J. Leckie,et al.  Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces , 1987 .

[71]  L. Charlet,et al.  The titration of clay minerals II. Structure-based model and implications for clay reactivity. , 2004, Journal of colloid and interface science.

[72]  A. Rohl,et al.  Letters. Evidence from surface phonons for the (2 × 1) reconstruction of the (101̄4) surface of calcite from computer simulation , 2003 .

[73]  H. Douglas,et al.  The electrokinetic behaviour of iceland spar against aqueous electrolyte solutions , 1950 .

[74]  P. Fenter,et al.  Mineral–water interfacial structures revealed by synchrotron X-ray scattering , 2004 .

[75]  O. Pokrovsky,et al.  Dolomite surface speciation and reactivity in aquatic systems , 1999 .

[76]  G. E. Agar,et al.  The zero point of charge of calcite , 1967 .

[77]  E. Forssberg,et al.  Mechanism of oleate interaction on salt-type minerals part I. Adsorption and electrokinetic studies of calcite in the presence of sodium oleate and sodium metasilicate , 1988 .

[78]  Dudley W. Thompson,et al.  Surface electrical properties of calcite , 1989 .

[79]  Robert Pugh,et al.  Solution chemistry studies and flotation behaviour of apatite, calcite and fluorite minerals with sodium oleate collector , 1985 .

[80]  J. Morse,et al.  Calcium carbonate formation and dissolution. , 2007, Chemical reviews.

[81]  S. A. MmxcRAFr,et al.  High-temperature structure refinements of calcite and magnesite , 1985 .

[82]  E. Sjöberg Mixed cinetic control of calcite dissolution , 1983 .

[83]  J. Cases,et al.  Zeta potential of magnesian carbonates in inorganic electrolytes , 1973 .

[84]  G. Bolt,et al.  Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. I: Model description and evaluation of intrinsic reaction constants , 1989 .

[85]  F. Mackenzie Carbonate mineralogy and geochemistry , 1978 .

[86]  R. Reeder Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth , 1996 .

[87]  S. Brantley,et al.  The role of dislocations and surface morphology in calcite dissolution , 1992 .

[88]  C. Eggleston,et al.  Dissolution kinetics of magnesite in acidic aqueous solution: a hydrothermal atomic force microscopy study assessing step kinetics and dissolution flux , 2002 .

[89]  John C. Westall Reactions at the Oxide-Solution Interface: Chemical and Electrostatic Models , 1987 .

[90]  P. Dove,et al.  Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by Scanning Force Microscopy , 1993 .

[91]  G. Binnig,et al.  True Atomic Resolution by Atomic Force Microscopy Through Repulsive and Attractive Forces , 1993, Science.

[92]  O. Pokrovsky,et al.  Processes at the magnesium-bearing carbonates/solution interface. I. A surface speciation model for magnesite , 1999 .

[93]  T. Lloyd,et al.  Adsorption of calcium ions from calcium chloride solutions onto calcium carbonate particles , 1991 .

[94]  A. Lasaga,et al.  A model for crystal dissolution , 2003 .

[95]  A. Aikin A manual of mineralogy , 1814 .

[96]  A. Lasaga,et al.  Interferometric study of the dolomite dissolution: a new conceptual model for mineral dissolution , 2003 .

[97]  J. Wray,et al.  Precipitation of Calcite and Aragonite , 1957 .

[98]  Oleg S. Pokrovsky,et al.  Processes at the magnesium-bearing carbonates/solution interface. II. kinetics and mechanism of magnesite dissolution. , 1999 .

[99]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[100]  N. Sturchio,et al.  The calcite (10l̄4) cleavage surface in water: Early results of a crystal truncation rod study , 1995 .

[101]  J. Morse,et al.  The dissolution kinetics of major sedimentary carbonate minerals , 2002 .

[102]  N. Vdović,et al.  Electrokinetics of natural and synthetic calcite suspensions , 1998 .

[103]  J. Leckie,et al.  Surface ionization and complexation at the oxide/water interface , 1978 .

[104]  S. C. Parker,et al.  Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces , 1997 .

[105]  H. Ashton,et al.  Encyclopedia of Sediments and Sedimentary Rocks , 2003 .

[106]  R. Reeder,et al.  Relationship between surface structure, growth mechanism, and trace element incorporation in calcite , 1995 .

[107]  F. Mackenzie,et al.  Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high Mg-calcites , 2006 .

[108]  Karina Rodríguez,et al.  Temperature and pressure effects on zeta potential values of reservoir minerals. , 2006, Journal of colloid and interface science.

[109]  P. Somasundaran,et al.  Effects of dissolved mineral species on the electrokinetic behavior of calcite and apatite , 1985 .

[110]  A. Lasaga,et al.  Variation of Crystal Dissolution Rate Based on a Dissolution Stepwave Model , 2001, Science.

[111]  B. Slater,et al.  Impurities and nonstoichiometry in the bulk and on the (101̄4) surface of dolomite , 2002 .

[112]  R. Garrels,et al.  Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals , 1989 .