Noise in Large-Signal, Time-Varying RF CMOS Circuits: Theory & Design

Author(s): Murphy, David Patrick | Advisor(s): Abidi, Asad A; Chang, Mau-Chung Frank | Abstract: RF CMOS design is now a mature field and CMOS radio transceivers have become standard in most consumer wireless devices. Like any wireless RF design, at the heart of the endeavor is the requirement to frequency translate signals between baseband and RF with minimal introduction of noise and distortion. This translation is generally accomplished using time-varying, strongly nonlinear circuits, whose operation and noise performance cannot be understood using standard LTI circuit analysis techniques. This work seeks to address some of the design and analysis challenges posed by a variety of these non-linear, time-varying CMOS RF circuits, specifically in the context of low noise design.First, a new wideband receiver architecture is proposed and analyzed. Using two separate passive-mixer-based down-conversion paths, noise cancelling is enabled, but voltage gain is avoided at unwanted blocker frequencies. This approach significantly relaxes the trade-off between noise, out-of-band linearity and wideband operation.Second, using a phasor-based analysis method, new theoretical results relating to noise mechanisms in LC oscillators are described. Amplitude noise and Q-degradation is quantified for the first time, while the analysis method is also used to re-derive a fundamental limit to the achievable phase noise of any LC oscillator.Finally, a low-noise, wideband PLL is described that is suitable for emerging mm-wave standards. This design demonstrates that CMOS technology is capable of delivering a high-performance wideband VCO, even at mm-wave frequencies.

[1]  M. Steyaert,et al.  Design and Analysis of a 90 nm mm-Wave Oscillator Using Inductive-Division LC Tank , 2009, IEEE Journal of Solid-State Circuits.

[2]  A. Mazzanti,et al.  Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise , 2008, IEEE Journal of Solid-State Circuits.

[3]  A. Fard,et al.  A 2.3GHz LC-tank CMOS VCO with optimal phase noise performance , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[4]  M. Tiebout,et al.  A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider , 2004, IEEE Journal of Solid-State Circuits.

[5]  Mohammad Nariman,et al.  A switched-capacitor mm-wave VCO in 65 nm digital CMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[6]  Yves Rolain,et al.  A 57-to-66GHz quadrature PLL in 45nm digital CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[7]  Joseph Mitola,et al.  The software radio architecture , 1995, IEEE Commun. Mag..

[8]  Heng Zhang,et al.  Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  B. Razavi Gadgets Gab at 60 Ghz , 2008, IEEE Spectrum.

[10]  Ali M. Niknejad,et al.  A 90nm CMOS low-power 60GHz transceiver with integrated baseband circuitry , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[11]  A. Abidi,et al.  Varactor characteristics, oscillator tuning curves, and AM-FM conversion , 2003, IEEE J. Solid State Circuits.

[12]  J. Phillips,et al.  Noise in mixers, oscillators, samplers, and logic an introduction to cyclostationary noise , 2000, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[13]  Ahmad Mirzaei,et al.  Analysis of Imperfections on Performance of 4-Phase Passive-Mixer-Based High-Q Bandpass Filters in SAW-Less Receivers , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  P.R. Kinget,et al.  Tail Current-Shaping to Improve Phase Noise in LC Voltage-Controlled Oscillators , 2006, IEEE Journal of Solid-State Circuits.

[15]  A. Abidi,et al.  Physical processes of phase noise in differential LC oscillators , 2000, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[16]  B. Nauta,et al.  The Blixer, a Wideband Balun-LNA-I/Q-Mixer Topology , 2008, IEEE Journal of Solid-State Circuits.

[17]  Pietro Andreani,et al.  More on the Phase Noise Performance of CMOS , 2006 .

[18]  J.C. Leete,et al.  Analysis and Optimization of Current-Driven Passive Mixers in Narrowband Direct-Conversion Receivers , 2009, IEEE Journal of Solid-State Circuits.

[19]  M.-C.F. Chang,et al.  A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver , 2005, IEEE Journal of Solid-State Circuits.

[20]  Asad A. Abidi,et al.  A single-chip 900-MHz spread-spectrum wireless transceiver in 1-/spl mu/m CMOS. I. Architecture and transmitter design , 1998 .

[21]  E. Klumperink,et al.  Noise cancelling in wideband CMOS LNAs , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[22]  Bram Nauta,et al.  A differential 4-path highly linear widely tunable on-chip band-pass filter , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[23]  Carlo Samori,et al.  Spectrum folding and phase noise in LC tuned oscillators , 1998 .

[24]  Rinaldo Castello,et al.  A 15 mW, 70 kHz 1/f corner direct conversion CMOS receiver , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[25]  N. A. Moseley,et al.  Digitally Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference , 2009, IEEE Journal of Solid-State Circuits.

[26]  Jonathan Borremans,et al.  A 40nm CMOS highly linear 0.4-to-6GHz receiver resilient to 0dBm out-of-band blockers , 2011, 2011 IEEE International Solid-State Circuits Conference.

[27]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[28]  Zhiwei Xu,et al.  A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c TRX , 2010, 2010 Proceedings of ESSCIRC.

[29]  Ali M. Niknejad,et al.  A 1.5-V 0.7-2.5-GHz CMOS Quadrature Demodulator for Multiband Direct-Conversion Receivers , 2007, IEEE J. Solid State Circuits.

[30]  Liang-Hung Lu,et al.  Design of Wide-Tuning-Range Millimeter-Wave CMOS VCO With a Standing-Wave Architecture , 2007, IEEE Journal of Solid-State Circuits.

[31]  Didier Belot,et al.  A 17.5-to-20.94GHz and 35-to-41.88GHz PLL in 65nm CMOS for wireless HD applications , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[32]  F. Kaertner Determination of the correlation spectrum of oscillators with low noise , 1989 .

[33]  Jesper Bank,et al.  A Harmonic-Oscillator Design Methodology Based on Describing Functions , 2006 .

[34]  Frank Wang,et al.  CMOS digital controlled oscillator with embedded DiCAD resonator for 58–64GHz linear frequency tuning and low phase noise , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[35]  Ahmad Mirzaei,et al.  Architectural Evolution of Integrated M-Phase High-Q Bandpass Filters , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[36]  HongMo Wang A solution for minimizing phase noise in low-power resonator-based oscillators , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[37]  D. Leeson A simple model of feedback oscillator noise spectrum , 1966 .

[38]  Frank Wang,et al.  Embedded DiCAD linear phase shifter for 57–65GHz reconfigurable direct frequency modulation in 90nm CMOS , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[39]  Hsiang-Hui Chang,et al.  A SAW-Less GSM/GPRS/EDGE Receiver Embedded in 65-nm SoC , 2011, IEEE Journal of Solid-State Circuits.

[40]  A.A. Abidi,et al.  Noise in RF-CMOS mixers: a simple physical model , 2000, IEEE Journal of Solid-State Circuits.

[41]  Adrian Tang,et al.  A low-overhead self-healing embedded system for ensuring high yield and long-term sustainability of 60GHz 4Gb/s radio-on-a-chip , 2012, 2012 IEEE International Solid-State Circuits Conference.

[42]  David Murphy,et al.  Phase Noise in LC Oscillators: A Phasor-Based Analysis of a General Result and of Loaded $Q$ , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[43]  A. Fard,et al.  An Analysis of $1/f^{2}$ Phase Noise in Bipolar Colpitts Oscillators (With a Digression on Bipolar Differential-Pair LC Oscillators) , 2007, IEEE Journal of Solid-State Circuits.

[44]  Ali M. Niknejad,et al.  mm-Wave Silicon Technology: 60 GHz and Beyond , 2008 .

[45]  I. W. Sandberg,et al.  An alternative approach to the realization of network transfer functions: The N-path filter , 1960 .

[46]  A. Hajimiri,et al.  Corrections to "A General Theory of Phase Noise in Electrical Oscillators" , 1998 .

[47]  R.G. Meyer,et al.  Phase noise in LC oscillators , 2000, IEEE Journal of Solid-State Circuits.

[48]  Ali Hajimiri,et al.  A general theory of phase noise in electrical oscillators , 1998 .

[49]  A. Demir,et al.  Phase noise in oscillators: a unifying theory and numerical methods for characterization , 2000 .

[50]  P. Andreani,et al.  On the phase-noise and phase-error performances of multiphase LC CMOS VCOs , 2004, IEEE Journal of Solid-State Circuits.

[51]  Eric A. M. Klumperink,et al.  A software-defined radio receiver architecture robust to out-of-band interference , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[52]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[53]  Asad A. Abidi,et al.  RF-CMOS oscillators with switched tuning , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[54]  A. Demir Phase noise and timing jitter in oscillators with colored-noise sources , 2002 .

[55]  A.A. Abidi,et al.  The Path to the Software-Defined Radio Receiver , 2007, IEEE Journal of Solid-State Circuits.

[56]  Toshiya Mitomo,et al.  A 60-GHz phase-locked loop with inductor-less prescaler in 90-nm CMOS , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.

[57]  Yo-Sheng Lin,et al.  Low-power 48-GHz CMOS VCO and 60-GHz CMOS LNA for 60-GHz dual-conversion receiver , 2009, 2009 International Symposium on VLSI Design, Automation and Test.

[58]  Henrik Sjöland,et al.  Improved switched tuning of differential CMOS VCOs , 2002 .

[59]  Qiuting Huang Phase noise to carrier ratio in LC oscillators , 2000 .

[60]  Minjae Lee,et al.  An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.

[61]  Ahmad Mirzaei,et al.  A 65 nm CMOS Quad-Band SAW-Less Receiver SoC for GSM/GPRS/EDGE , 2011, IEEE Journal of Solid-State Circuits.

[62]  George Chien,et al.  A SAW-less GSM/GPRS/EDGE receiver embedded in a 65nm CMOS SoC , 2011, 2011 IEEE International Solid-State Circuits Conference.

[63]  Alyosha C. Molnar,et al.  A Passive Mixer-First Receiver With Digitally Controlled and Widely Tunable RF Interface , 2010, IEEE Journal of Solid-State Circuits.

[64]  Ahmad Mirzaei,et al.  Analysis and Optimization of Direct-Conversion Receivers With 25% Duty-Cycle Current-Driven Passive Mixers , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[65]  A. Abidi,et al.  The designer's guide to high-purity oscillators , 2004 .

[66]  H. Darabi,et al.  A 65nm CMOS quad-band SAW-less receiver for GSM/GPRS/EDGE , 2010, 2010 Symposium on VLSI Circuits.

[67]  Bram Nauta,et al.  A CMOS transconductance-C filter technique for very high frequencies , 1992 .

[68]  Jonathan Borremans,et al.  A 40 nm CMOS 0.4–6 GHz Receiver Resilient to Out-of-Band Blockers , 2011, IEEE Journal of Solid-State Circuits.

[69]  Eric A. M. Klumperink,et al.  Tunable High-Q N-Path Band-Pass Filters: Modeling and Verification , 2011, IEEE Journal of Solid-State Circuits.

[70]  A. Fard,et al.  A study of phase noise in colpitts and LC-tank CMOS oscillators , 2005, IEEE Journal of Solid-State Circuits.

[71]  D. Flandre,et al.  Fully Integrated High-Q Switched Capacitor Bandpass Filter with Center Frequency and Bandwidth Tuning , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[72]  H. Melchior,et al.  An integrated CMOS switched-capacitor bandpass filter based on N-path and frequency-sampling principles , 1983, IEEE Journal of Solid-State Circuits.

[73]  Shen-Iuan Liu,et al.  A digitally calibrated 64.3–66.2GHz phase-locked loop , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[74]  Li Lin,et al.  A 1.75 GHz highly-integrated narrow-band CMOS transmitter with harmonic-rejection mixers , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[75]  D.J. Allstot,et al.  CMOS VCO and LNA Using Tuned-Input Tuned-Output Circuits , 2008, IEEE Journal of Solid-State Circuits.

[76]  Caroline Andrews,et al.  A passive-mixer-first receiver with baseband-controlled RF impedance matching, ≪ 6dB NF, and ≫ 27dBm wideband IIP3 , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[77]  Eric A. M. Klumperink,et al.  A 0.2-to-2.0GHz 65nm CMOS receiver without LNA achieving ≫11dBm IIP3 and ≪6.5 dB NF , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[78]  Ahmad Mirzaei,et al.  Analysis of Direct-Conversion IQ Transmitters With 25% Duty-Cycle Passive Mixers , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[79]  E. Hegazi,et al.  A 1.5V, 1.7mA 700 MHz CMOS LC oscillator with no upconverted flicker noise , 2001, Proceedings of the 27th European Solid-State Circuits Conference.

[80]  Michael Peter Kennedy,et al.  The optimum power conversion efficiency and associated gain of an LC CMOS oscillator , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[81]  Rahim Bagheri,et al.  An 800MHz to 5GHz Software-Defined Radio Receiver in 90nm CMOS , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[82]  Eric A. M. Klumperink,et al.  A Wideband Balun LNA I/Q-Mixer combination in 65nm CMOS , 2008, ISSCC.

[83]  Alyosha C. Molnar,et al.  Implications of Passive Mixer Transparency for Impedance Matching and Noise Figure in Passive Mixer-First Receivers , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[84]  Pietro Andreani,et al.  A 1.4mW 4.90-to-5.65GHz Class-C CMOS VCO with an Average FoM of 194.5dBc/Hz , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[85]  Jri Lee,et al.  Study of Subharmonically Injection-Locked PLLs , 2009, IEEE Journal of Solid-State Circuits.

[86]  Zhiyu Ru,et al.  Frequency translation techniques for interference-robust software-defined radio receivers , 2009 .

[87]  Ahmad Mirzaei,et al.  A blocker-tolerant wideband noise-cancelling receiver with a 2dB noise figure , 2012, 2012 IEEE International Solid-State Circuits Conference.