Locking and Unlocking the Molecular Spin Crossover Transition

The Fe(II) spin crossover complex [Fe{H2B(pz)2}2(bipy)] (pz = pyrazol‐1‐yl, bipy = 2,2′‐bipyridine) can be locked in a largely low‐spin‐state configuration over a temperature range that includes temperatures well above the thermal spin crossover temperature of 160 K. This locking of the spin state is achieved for nanometer thin films of this complex in two distinct ways: through substrate interactions with dielectric substrates such as SiO2 and Al2O3, or in powder samples by mixing with the strongly dipolar zwitterionic p‐benzoquinonemonoimine C6H2(—⋯ NH2)2(—⋯ O)2. Remarkably, it is found in both cases that incident X‐ray fluences then restore the [Fe{H2B(pz)2}2(bipy)] moiety to an electronic state characteristic of the high spin state at temperatures of 200 K to above room temperature; that is, well above the spin crossover transition temperature for the pristine powder, and well above the temperatures characteristic of light‐ or X‐ray‐induced excited‐spin‐state trapping. Heating slightly above room temperature allows the initial locked state to be restored. These findings, supported by theory, show how the spin crossover transition can be manipulated reversibly around room temperature by appropriate design of the electrostatic and chemical environment.

[1]  W. Kuch,et al.  Controlling the magnetism of adsorbed metal–organic molecules , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  M. M. Khusniyarov,et al.  How to Switch Spin-Crossover Metal Complexes at Constant Room Temperature. , 2016, Chemistry.

[3]  J. Trasobares,et al.  A 17 GHz molecular rectifier , 2016, Nature communications.

[4]  A. Smogunov,et al.  Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer , 2016, Nature Communications.

[5]  F. Heinemann,et al.  Molecular Spin Crossover in Slow Motion: Light-Induced Spin-State Transitions in Trigonal Prismatic Iron(II) Complexes. , 2016, Inorganic chemistry.

[6]  A. Enders,et al.  Surface-induced spin state locking of the [Fe(H2B(pz)2)2(bipy)] spin crossover complex , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Daniel P. Miller,et al.  Modulating Bond Lengths via Backdonation : A First-Principles Investigation of a Quinonoid Zwitterion Adsorbed to Coinage Metal Surfaces , 2016 .

[8]  G. Molnár,et al.  Charge Transport and Electrical Properties of Spin Crossover Materials: Towards Nanoelectronic and Spintronic Devices , 2016 .

[9]  E. Schierle,et al.  Highly Efficient Thermal and Light-Induced Spin-State Switching of an Fe(II) Complex in Direct Contact with a Solid Surface. , 2015, ACS nano.

[10]  P. Dowben,et al.  Complexities in the Molecular Spin Crossover Transition , 2015 .

[11]  S. J. van der Molen,et al.  Spin transition in arrays of gold nanoparticles and spin crossover molecules. , 2015, ACS nano.

[12]  E. Collet,et al.  Ultrafast light-induced spin-state trapping photophysics investigated in Fe(phen)2(NCS)2 spin-crossover crystal. , 2015, Accounts of chemical research.

[13]  E. Collet,et al.  Sequential Activation of Molecular Breathing and Bending during Spin-Crossover Photoswitching Revealed by Femtosecond Optical and X-Ray Absorption Spectroscopy. , 2014, Physical review letters.

[14]  J. Let́ard,et al.  Photoswitching of the spin crossover polymeric material [Fe(Htrz)2(trz)](BF4) under continuous laser irradiation in a Raman scattering experiment , 2014 .

[15]  Kelly J. Gaffney,et al.  Tracking excited-state charge and spin dynamics in iron coordination complexes , 2014, Nature.

[16]  L. Kipp,et al.  Iron(II) spin-crossover complexes in ultrathin films: electronic structure and spin-state switching by visible and vacuum-UV light. , 2014, Angewandte Chemie.

[17]  P. Dowben,et al.  The spin state of a molecular adsorbate driven by the ferroelectric substrate polarization. , 2014, Chemical communications.

[18]  Eliseo Ruiz,et al.  Charge transport properties of spin crossover systems. , 2014, Physical chemistry chemical physics : PCCP.

[19]  R. Berndt,et al.  Spin-crossover complex on Au(111): structural and electronic differences between mono- and multilayers. , 2013, Chemistry.

[20]  A. Calzolari,et al.  Iron(II) spin crossover films on Au(111): scanning probe microscopy and photoelectron spectroscopy. , 2013, Chemical communications.

[21]  E. Beaurepaire,et al.  First glimpse of the soft x-ray induced excited spin-state trapping effect dynamics on spin cross-over molecules. , 2013, The Journal of chemical physics.

[22]  P. Rosa,et al.  Temperature- and Light-Induced Spin Crossover Observed by X-ray Spectroscopy on Isolated Fe(II) Complexes on Gold. , 2013, The journal of physical chemistry letters.

[23]  Aurelian Rotaru,et al.  Nano‐electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices , 2013, Advanced materials.

[24]  Marco Buongiorno Nardelli,et al.  Modification of molecular spin crossover in ultrathin films. , 2013, Nano letters.

[25]  J. Let́ard,et al.  Optimizing the Stability of Trapped Metastable Spin States , 2013 .

[26]  T. Pędziński,et al.  High intrinsic barriers against spin-state relaxation in iron(II)-complex solutions. , 2013, Chemistry.

[27]  Zhengzheng Zhang,et al.  Electronic Structure of a Spin Crossover Molecular Adsorbate , 2012 .

[28]  Francesca Matino,et al.  Electron-induced spin crossover of single molecules in a bilayer on gold. , 2012, Angewandte Chemie.

[29]  Jean-François Létard,et al.  Spin crossover materials evaporated under clean high vacuum and ultra-high vacuum conditions: from thin films to single molecules , 2012 .

[30]  Aurelian Rotaru,et al.  Spin state dependence of electrical conductivity of spin crossover materials. , 2012, Chemical communications.

[31]  Eliseo Ruiz,et al.  Coherent transport through spin-crossover single molecules. , 2012, Journal of the American Chemical Society.

[32]  S. Sanvito,et al.  Giant resistance change across the phase transition in spin-crossover molecules. , 2012, Physical review letters.

[33]  Manuel Gruber,et al.  Robust spin crossover and memristance across a single molecule , 2012, Nature Communications.

[34]  J. Dayen,et al.  Photoconduction in [Fe(Htrz)2(trz)](BF4)·H2O nanocrystals. , 2011, Chemical communications.

[35]  Christophe Vieu,et al.  Electrical properties and non-volatile memory effect of the [Fe(HB(pz)3)2] spin crossover complex integrated in a microelectrode device , 2011 .

[36]  E. Quandt,et al.  First observation of light-induced spin change in vacuum deposited thin films of iron spin crossover complexes. , 2011, Dalton transactions.

[37]  J. McCusker,et al.  Femtosecond Soft X-ray Spectroscopy of Solvated Transition-Metal Complexes: Deciphering the Interplay of Electronic and Structural Dynamics. , 2011, Journal of Physical Chemistry Letters.

[38]  Eugenio Coronado,et al.  Room‐Temperature Electrical Addressing of a Bistable Spin‐Crossover Molecular System , 2011, Advanced materials.

[39]  C. Cazin,et al.  Reactions of Amines with Zwitterionic Quinoneimines: Synthesis of New Anionic and Zwitterionic Quinonoids , 2009 .

[40]  K. Chapman,et al.  A nanoscale molecular switch triggered by thermal, light, and guest perturbation. , 2009, Angewandte Chemie.

[41]  M. Halcrow Trapping and manipulating excited spin states of transition metal compounds. , 2008, Chemical Society reviews.

[42]  O. Sato,et al.  Control of magnetic properties through external stimuli. , 2007, Angewandte Chemie.

[43]  Jean-François Létard,et al.  Photomagnetism of iron(II) spin crossover complexes—the T(LIESST) approach , 2006 .

[44]  O. Sato,et al.  Valence tautomeric transitions with thermal hysteresis around room temperature and photoinduced effects observed in a cobalt-tetraoxolene complex. , 2006, Journal of the American Chemical Society.

[45]  M. Marchivie,et al.  A guideline to the design of molecular-based materials with long-lived photomagnetic lifetimes. , 2005, Chemistry.

[46]  P. Braunstein,et al.  First transamination reactions for the one-pot synthesis of substituted zwitterionic quinones. , 2005, Chemical communications.

[47]  P. Gütlich,et al.  Spin Crossover— An Overall Perspective , 2005 .

[48]  K. Törnroos,et al.  Challenges in engineering spin crossover: structures and magnetic properties of six alcohol solvates of iron(II) tris(2-picolylamine) dichloride. , 2004, Angewandte Chemie.

[49]  P. Gütlich,et al.  Spin Crossover in Transition Metal Compounds II , 2004 .

[50]  E. Gullikson,et al.  Performance Characteristics of Beamline 6.3.1 from 200 eV to 2000 eV at the Advanced Light Source , 2004 .

[51]  A. L. Thompson,et al.  Thermal and light induced polymorphism in iron(II) spin crossover compounds. , 2004, Chemical communications.

[52]  Jean-François Létard,et al.  Towards spin crossover applications , 2004 .

[53]  R. Welter,et al.  A 6 pi + 6 pi potentially antiaromatic zwitterion preferred to a quinoidal structure: its reactivity toward organic and inorganic reagents. , 2003, Journal of the American Chemical Society.

[54]  J. McGarvey,et al.  Thermal and Optical Switching of Molecular Spin States in the {[FeL[H2B(pz)2]2} Spin-Crossover System (L = bpy, phen)† , 2002 .

[55]  P. Braunstein,et al.  Unprecedented zwitterion in quinonoid chemistry. , 2002, Chemical communications.

[56]  J. Let́ard,et al.  Structural characterization of a photoinduced molecular switch. , 2002, Journal of the American Chemical Society.

[57]  Yann Garcia,et al.  Spin crossover phenomena in Fe(II) complexes , 2001 .

[58]  Kahn,et al.  Photomagnetic properties in a series of spin crossover compounds , 2000, Chemistry.

[59]  Jyhfu Lee,et al.  X-ray Absorption Spectroscopic Studies on Light-Induced Excited Spin State Trapping of an Fe(II) Complex , 2000 .

[60]  Jean-François Létard,et al.  Spin crossover behavior under pressure of Fe(PM-L)2(NCS)2 compounds with substituted 2′-pyridylmethylene 4-anilino ligands , 1998 .

[61]  J. Real,et al.  Spin Crossover in Novel Dihydrobis(1-pyrazolyl)borate [H(2)B(pz)(2)]-Containing Iron(II) Complexes. Synthesis, X-ray Structure, and Magnetic Properties of [FeL{H(2)B(pz)(2)}(2)] (L = 1,10-Phenanthroline and 2,2'-Bipyridine). , 1997, Inorganic chemistry.

[62]  J. Mosselmans,et al.  Soft X-ray induced excited spin state trapping and soft X-ray photochemistry at the iron L2,3 edge in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] (phen = 1,10-phenanthroline)‡ , 1997 .

[63]  J. McCusker,et al.  Variable-Temperature Studies of Laser-Initiated 5T2 → 1A1 Intersystem Crossing in Spin-Crossover Complexes: Empirical Correlations between Activation Parameters and Ligand Structure in a Series of Polypyridyl Ferrous Complexes , 1996 .

[64]  J. Jesson,et al.  Spin equilibria in octahedral iron(II) poly((1-pyrazolyl)-borates , 1967 .