Time‐dependent coupled Hartree–Fock calculations of multipole polarizabilities and dispersion interactions in van der Waals dimers consisting of He, H2, Ne, and N2

The long‐range dispersion interaction coefficients for van der Waals dimers consisting of He, Ne, H2, and N2 have been computed in the time‐dependent coupled Hartree–Fock approximation. Static multipole polarizabilities and van der Waals coefficients Cn(n=6,8,10) are presented. The difference between coupled and uncoupled Hartree–Fock results (‘‘apparent’’ correlation) is large in all systems considered and only in the case of Ne the ‘‘true’’ correlation effects are larger. In order to keep the basis set errors in the computed properties smaller than the correlation errors, the basis sets have to be very large. This is demonstrated by using different basis sets for the molecules H2 and N2. The computed van der Waals coefficients for the ten dimers are very accurate, at least the C6 and C8 coefficients, with correlation errors less than 6% for He2, H2–H2, N2–N2, HeH2, HeN2, and H2–N2.

[1]  A. J. Sadlej Correlation effects in externally perturbed many‐electron systems , 1983 .

[2]  P. Habitz,et al.  The anisotropic van der waals potential for He-N2 , 1982 .

[3]  Y. Y. Yung,et al.  The He–N2 anisotropic Van der Waals potential. Test of a simple model using state-to-state differential scattering cross-sections , 1982 .

[4]  J. Reuss,et al.  Measurements of the hyperfine dimer spectrum for H2-Ne, H2-Ar, H2-Kr by the magnetic beam renosance technique☆ , 1981 .

[5]  P. Wormer,et al.  Finite field configuration interaction calculations on the distance dependence of the hyperpolarizabilities of H2 , 1981 .

[6]  A. Thakkar The generator coordinate method applied to variational perturbation theory. Multipole polarizabilities, spectral sums, and dispersion coefficients for helium , 1981 .

[7]  A. J. Sadlej Perturbation theory of the electron correlation effects for atomic and molecular properties , 1981 .

[8]  P. C. Hariharan,et al.  Refined abinitio calculation of the potential energy surface of the He–H2 interaction with special emphasis to the region of the van der Waals minimum , 1980 .

[9]  D. M. Bishop,et al.  Dynamic dipole polarizability of H2 and HeH , 1980 .

[10]  A. Avoird,et al.  Multipole moments, polarizabilities and anisotropic long range interaction coefficients for N2 , 1980 .

[11]  A. Klein Nuclear collective motion. , 1980, Science.

[12]  H. Lekkerkerker,et al.  Dispersion forces between linear molecules , 1979 .

[13]  J. Simons,et al.  The Hartree-Fock Method for Atoms , 1979 .

[14]  P. Hay,et al.  Molecular properties of N2 and CO2 as functions of nuclear geometry: Polarizabilities, quadrupole moments, and dipole moments , 1979 .

[15]  P. Wormer,et al.  Anisotropy of long range interactions between linear molecules: H2-H2 and H2-He , 1979 .

[16]  H. Lekkerkerker,et al.  Dispersion forces between noble gas atoms , 1978 .

[17]  K. Tang,et al.  A simple theoretical model for the van der Waals potential at intermediate distances. III. Anisotropic potentials of Ar–H2, Kr–H2, and Xe–H2 , 1978 .

[18]  Jens Oddershede,et al.  Polarization Propagator Calculations , 1978 .

[19]  R. McEachran,et al.  Polarisabilities and shielding factors for He, Ne and Ar , 1977 .

[20]  G. Arrighini,et al.  Electric and magnetic properties of N2 and H2O by the equations‐of‐motion method , 1977 .

[21]  William J. Meath,et al.  Dispersion energy constants C 6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O , 1977 .

[22]  K. Ng,et al.  Validity of the multipole results for first-order molecule-molecule interaction energies. , 1977 .

[23]  W. Meyer Dynamic multipole polarizabilities of H2 and He and long-range interaction coefficients for H2-H2,H2He and He-He , 1976 .

[24]  J. M. Norbeck,et al.  Upper and lower bounds of two‐ and three‐body dipole, quadrupole, and octupole van der Waals coefficients for hydrogen, noble gas, and alkali atom interactions , 1976 .

[25]  Alan K. Burnham,et al.  Measurement of the dispersion in polarizability anisotropies , 1975 .

[26]  N. H. Beebe,et al.  Self‐consistent time‐dependent Hartree–Fock calculations of dynamic polarizabilities, dispersion forces, and nuclear spin–spin coupling constants for the H2 and HF molecules , 1975 .

[27]  E. A. McCullough,et al.  The partial-wave self-consistent-field method for diatomic molecules: Computational formalism and results for small molecules , 1975 .

[28]  R. F. Stewart Time-dependent Hartree-Fock theory for three- and four-electron atomic systems , 1975 .

[29]  W. H. Henneker,et al.  Dipole properties of atoms and molecules in the random phase approximation , 1975 .

[30]  M. Doran The multipole long-range (Van der Waals) interaction coefficients for neon, argon, krypton and xenon , 1974 .

[31]  G. Arrighini,et al.  Long-range interaction energy of two- and four-electron atoms , 1973 .

[32]  J. Browne,et al.  Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering , 1973 .

[33]  P. W. Langhoff,et al.  Aspects of Time-Dependent Perturbation Theory , 1972 .

[34]  S. Kaneko van der Waals Constants and Nonadditive Triple‐Dipole Force Constants for He and Ne by the Coupled Hartree‐Fock Approximation , 1972 .

[35]  P. W. Langhoff,et al.  Comparisons of Dispersion Force Bounding Methods with Applications to Anisotropic Interactions , 1971 .

[36]  G. Starkschall,et al.  Improved Error Bounds for the Long‐Range Forces between Atoms , 1971 .

[37]  Poul Jørgensen,et al.  Time‐dependent Hartree–Fock calculations in the Pariser–Parr–Pople model. Applications to aniline, azulene and pyridine , 1970 .

[38]  Robert A. Harris,et al.  Oscillator Strengths and Rotational Strengths in Hartree–Fock Theory , 1969 .

[39]  M. Karplus,et al.  Perturbed Hartree–Fock Theory. I. Diagrammatic Double‐Perturbation Analysis , 1969 .

[40]  S. Epstein,et al.  Sum Rules for Variational Wavefunctions , 1969 .

[41]  C. Roothaan,et al.  Electric Dipole Polarizability of Atoms by the Hartree—Fock Method. I. Theory for Closed‐Shell Systems , 1965 .

[42]  W. Lipscomb,et al.  Perturbed Hartree—Fock Calculations. I. Magnetic Susceptibility and Shielding in the LiH Molecule , 1963 .

[43]  A. Dalgarno Atomic polarizabilities and shielding factors , 1962 .

[44]  D. Thouless Stability conditions and nuclear rotations in the Hartree-Fock theory , 1960 .

[45]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .