Dependence of variables construed as an atomic formula
暂无分享,去创建一个
[1] J. Hintikka. The Principles of Mathematics Revisited: Introduction , 1996 .
[2] John Myhill,et al. A system which can define its own truth , 1950 .
[3] H. Enderton. Finite Partially-Ordered Quantifiers , 1970 .
[4] Wilbur John Walkoe,et al. Finite Partially-Ordered Quantification , 1970, J. Symb. Log..
[5] Richard A. Mollin. Algebraic Number Theory, Second Edition , 2011 .
[6] Mihaly Makkai. Review: S. C. Kleene, Finite Axiomatizability of Theories in the Predicate Calculus Using Additional Predicate Symbols; W. Craig, R. L. Vaught, Finite Axiomatizability Using Additional Predicates , 1971 .
[7] William Craig,et al. Finite Axiomatizability using additional predicates , 1958, Journal of Symbolic Logic.
[8] William Craig,et al. Satisfaction for n-th order languages defined in n-th order languages , 1965, Journal of Symbolic Logic.
[9] Wilfrid Hodges,et al. Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.
[10] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[11] Jouko A. Väänänen,et al. On the semantics of informational independence , 2002, Log. J. IGPL.
[12] Johan van Benthem,et al. The Age of Alternative Logics , 2005 .
[13] Francien Dechesne,et al. Signalling in IF games: a tricky business , 2005 .
[14] Barbara H. Partee,et al. Noun Phrase Interpretation and Type‐shifting Principles , 2008 .
[15] Jaakko Hintikka,et al. Hyperclassical Logic (A.K.A. If Logic) and its Implications for Logical Theory , 2002, Bulletin of Symbolic Logic.
[16] S. C. Kleene,et al. Finite Axiomatizability of Theories in the Predicate Calculus Using Additional Predicate Symbols , 1952 .
[17] Jaakko Hintikka,et al. Defining Truth, the Whole Truth and Nothing but the Truth , 1997 .
[18] Wilfried Hodges,et al. Some Strange Quantifiers , 1997, Structures in Logic and Computer Science.