Complementing Semi-deterministic Büchi Automata

We introduce an efficient complementation technique for semi-deterministic Buchi automata, which are Buchi automata that are deterministic in the limit: from every accepting state onward, their behaviour is deterministic. It is interesting to study semi-deterministic automata, because they play a role in practical applications of automata theory, such as the analysis of Markov decision processes. Our motivation to study their complementation comes from the termination analysis implemented in Ultimate Buchi Automizer, where these automata represent checked runs and have to be complemented to identify runs to be checked. We show that semi-determinism leads to a simpler complementation procedure: an extended breakpoint construction that allows for symbolic implementation. It also leads to significantly improved bounds as the complement of a semi-deterministic automaton with n states has less than $$4^n$$ states. Moreover, the resulting automaton is unambiguous, which again offers new applications, like the analysis of Markov chains. We have evaluated our construction against the semi-deterministic automata produced by the Ultimate Buchi Automizer. The evaluation confirms that our algorithm outperforms the known complementation techniques for general nondeterministic Buchi automata.

[1]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[2]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[3]  Jean-Pierre Pécuchet On the Complementation of Büchi Automata , 1986, Theor. Comput. Sci..

[4]  Sven Schewe,et al.  Tight Bounds for Complementing Parity Automata , 2014, MFCS.

[5]  Qiqi Yan Lower Bounds for Complementation of omega-Automata Via the Full Automata Technique , 2008, Log. Methods Comput. Sci..

[6]  Pierre Wolper,et al.  The Complementation Problem for Büchi Automata with Appplications to Temporal Logic , 1987, Theor. Comput. Sci..

[7]  Thomas Wilke,et al.  Complementation, Disambiguation, and Determinization of Büchi Automata Unified , 2008, ICALP.

[8]  Denis Poitrenaud,et al.  SPOT: an extensible model checking library using transition-based generalized Bu/spl uml/chi automata , 2004, The IEEE Computer Society's 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, 2004. (MASCOTS 2004). Proceedings..

[9]  Alexandre Duret-Lutz,et al.  Compositional Approach to Suspension and Other Improvements to LTL Translation , 2013, SPIN.

[10]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[11]  Orna Kupferman,et al.  Weak alternating automata are not that weak , 2001, TOCL.

[12]  Moshe Y. Vardi The Büchi Complementation Saga , 2007, STACS.

[13]  Sven Schewe,et al.  Tight Bounds for the Determinisation and Complementation of Generalised Büchi Automata , 2012, ATVA.

[14]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.

[15]  Nir Piterman From Nondeterministic Büchi and Streett Automata to Deterministic Parity Automata , 2007, Log. Methods Comput. Sci..

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Robert P. Kurshan,et al.  Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach , 2014 .

[18]  David E. Muller,et al.  Infinite sequences and finite machines , 1963, SWCT.

[19]  Dirk Beyer Software Verification and Verifiable Witnesses - (Report on SV-COMP 2015) , 2015, TACAS.

[20]  Lijun Zhang,et al.  Lazy Probabilistic Model Checking without Determinisation , 2013, CONCUR.

[21]  Sven Schewe,et al.  Büchi complementation made tight , 2009, STACS.

[22]  Sasha Rubin,et al.  Verifying ω-regular properties of Markov chains , 2004 .

[23]  Yih-Kuen Tsay,et al.  State of Büchi Complementation , 2010, CIAA.

[24]  Satoru Miyano,et al.  Alternating Finite Automata on omega-Words , 1984, CAAP.

[25]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[26]  Yih-Kuen Tsay,et al.  GOAL for Games, Omega-Automata, and Logics , 2013, CAV.

[27]  Orna Kupferman,et al.  Büchi Complementation Made Tighter , 2006, Int. J. Found. Comput. Sci..

[28]  Thomas Wilke,et al.  Unifying Büchi Complementation Constructions , 2013, CSL.

[29]  Andreas Podelski,et al.  Fairness Modulo Theory: A New Approach to LTL Software Model Checking , 2015, CAV.

[30]  Christof Löding,et al.  Improved Ramsey-Based Büchi Complementation , 2012, FoSSaCS.

[31]  Jochen Hoenicke,et al.  Termination Analysis by Learning Terminating Programs , 2014, CAV.

[32]  William J. Sakoda,et al.  Nondeterminism and the size of two way finite automata , 1978, STOC.

[33]  Sven Schewe,et al.  Tighter Bounds for the Determinisation of Büchi Automata , 2009, FoSSaCS.

[34]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[35]  S. Safra,et al.  On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[36]  Orna Kupferman,et al.  On Complementing Nondeterministic Büchi Automata , 2003, CHARME.

[37]  Jan Kretínský,et al.  The Hanoi Omega-Automata Format , 2015, CAV.