Effect of alloying elements on the coarsening rate of γʹ precipitates in multi-component CoNi-based superalloys with high Cr content

[1]  W. Boettinger,et al.  Development of a Diffusion Mobility Database for Co-Based Superalloys , 2002, Journal of Phase Equilibria and Diffusion.

[2]  Q. Feng,et al.  Microstructures and properties of a novel γ′-strengthened multi-component CoNi-based wrought superalloy designed by CALPHAD method , 2020, Materials Science and Engineering: A.

[3]  D. Seidman,et al.  Effect of Cr additions on a γ-γ’ microstructure and creep behavior of a Co-based superalloy with low W content , 2020 .

[4]  Xitao Wang,et al.  Creep behaviour of a novel CoNi-base single-crystal superalloy at high temperature and low stress , 2020 .

[5]  Huadong Fu,et al.  Microstructure Evolution of Multicomponent γ′-Strengthened Co-Based Superalloy at 750 °C and 1000 °C with Different Al and Ti Contents , 2020, Metallurgical and Materials Transactions A.

[6]  Huadong Fu,et al.  Microstructure and Properties Evolution of Co-Al-W-Ni-Cr Superalloys by Molybdenum and Niobium Substitutions for Tungsten , 2019, Metallurgical and Materials Transactions A.

[7]  D. Seidman,et al.  γ’-(L12) precipitate evolution during isothermal aging of a Co Al W Ni superalloy , 2019, Acta Materialia.

[8]  Huadong Fu,et al.  Effects of aluminum and molybdenum content on the microstructure and properties of multi-component γ′-strengthened cobalt-base superalloys , 2018, Materials Science and Engineering: A.

[9]  Ronald D. Noebe,et al.  Temporal evolution of a model Co-Al-W superalloy aged at 650 °C and 750 °C , 2018, Acta Materialia.

[10]  T. Nieh,et al.  Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy , 2018 .

[11]  A. Hauet,et al.  Kinetics pathway of precipitation in model Co-Al-W superalloy , 2018 .

[12]  T. Pollock,et al.  Designing nickel base alloys for microstructural stability through low γ-γ′ interfacial energy and lattice misfit , 2018 .

[13]  D. Seidman,et al.  Effects of titanium substitutions for aluminum and tungsten in Co-10Ni-9Al-9W (at%) superalloys , 2017 .

[14]  H. Chang,et al.  Effect of Mo on microstructural characteristics and coarsening kinetics of γ' precipitates in Co-Al-W-Ta-Ti alloys , 2017 .

[15]  P. Midgley,et al.  Coarsening behaviour and interfacial structure of γ′ precipitates in Co-Al-W based superalloys , 2016 .

[16]  R. Drautz,et al.  Diffusion of solutes in fcc Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo , 2016 .

[17]  S. Neumeier,et al.  Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance , 2015 .

[18]  T. Pollock,et al.  L12-Strengthened Cobalt-Base Superalloys , 2015 .

[19]  Q. Feng,et al.  Improved High-Temperature Microstructural Stability and Creep Property of Novel Co-Base Single-Crystal Alloys Containing Ta and Ti , 2014 .

[20]  J. Tiley,et al.  Coarsening kinetics of γ′ precipitates in cobalt-base alloys , 2013 .

[21]  S. Neumeier,et al.  Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants , 2010 .

[22]  Tresa M. Pollock,et al.  New Co-based γ-γ′ high-temperature alloys , 2010 .

[23]  H. Fraser,et al.  Coarsening kinetics of γ′ precipitates in the commercial nickel base Superalloy René 88 DT , 2009 .

[24]  R. Reed The Superalloys: Fundamentals and Applications , 2006 .

[25]  K. Ishida,et al.  Cobalt-Base High-Temperature Alloys , 2006, Science.

[26]  P. Voorhees,et al.  Ostwald ripening in concentrated alloys , 1994 .

[27]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .