The cover time of the giant component of a random graph

We study the cover time of a random walk on the largest component of the random graph Gn,p. We determine its value up to a factor 1 + o(1) whenever np = c > 1, c = O(lnn). In particular, we show that the cover time is not monotone for c = Θ(lnn). We also determine the cover time of the k-cores, k ≥ 2. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008

[1]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[2]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[3]  Richard J. Lipton,et al.  Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[4]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[5]  B. Bollobás The evolution of random graphs , 1984 .

[6]  J. Laurie Snell,et al.  Random Walks and Electrical Networks , 1984 .

[7]  Béla Bollobás,et al.  Random Graphs , 1985 .

[8]  Boris G. Pittel,et al.  On Tree Census and the Giant Component in Sparse Random Graphs , 1990, Random Struct. Algorithms.

[9]  David Zukerman On the time to traverse all edges of a graph , 1991 .

[10]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[11]  Uriel Feige,et al.  A Tight Lower Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[12]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[13]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[14]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[15]  Johan Jonasson On the Cover Time for Random Walks on Random Graphs , 1998, Comb. Probab. Comput..

[16]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[17]  Alan M. Frieze,et al.  The cover time of sparse random graphs. , 2003, SODA '03.

[18]  Colin Cooper The cores of random hypergraphs with a given degree sequence , 2004 .

[19]  Alan M. Frieze,et al.  The Cover Time of Random Regular Graphs , 2005, SIAM J. Discret. Math..

[20]  I. Pinelis On inequalities for sums of bounded random variables , 2006, math/0603030.

[21]  B. Reed,et al.  The Evolution of the Mixing Rate , 2007, math/0701474.

[22]  Alan M. Frieze,et al.  The cover time of the preferential attachment graph , 2007, J. Comb. Theory, Ser. B.