Sensor Fusion for Position Estimation of an Industrial Robot

A modern industrial robot control system is often based only upon measurements from the motors of the manipulator. Hence to follow a trajectory with the tool an accurate description of the system m ...

[1]  Mikael Norrlöf,et al.  Closed-Loop Identification of an Industrial Robot Containing Flexibilities , 2003 .

[2]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[3]  P. Coiffet Modelling and Control , 1983 .

[4]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[5]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[6]  Rickard Karlsson,et al.  Simulation Based Methods for Target Tracking , 2002 .

[7]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[8]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[9]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.

[10]  Mikael Norrlöf,et al.  An adaptive iterative learning control algorithm with experiments on an industrial robot , 2002, IEEE Trans. Robotics Autom..

[11]  M. Norrlof,et al.  Iterative learning control of a flexible robot arm using accelerometers , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[12]  Michael J. Grimble,et al.  Iterative Learning Control for Deterministic Systems , 1992 .

[13]  Svante Gunnarsson,et al.  Experimental comparison of some classical iterative learning control algorithms , 2002, IEEE Trans. Robotics Autom..

[14]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[15]  Bruno Siciliano,et al.  Modelling and Control of Robot Manipulators , 1997, Advanced Textbooks in Control and Signal Processing.

[16]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .