Kinetic order-disorder transitions in a pause-and-go swarming model with memory.

[1]  G. Papanicolaou,et al.  Mean field model for collective motion bistability , 2016, Discrete & Continuous Dynamical Systems - B.

[2]  G. Ariel,et al.  On effective temperature in network models of collective behavior. , 2016, Chaos.

[3]  Amir Ayali,et al.  Locust Collective Motion and Its Modeling , 2015, PLoS Comput. Biol..

[4]  H. Chaté,et al.  Intermittent collective dynamics emerge from conflicting imperatives in sheep herds , 2015, Proceedings of the National Academy of Sciences.

[5]  I. Aranson,et al.  Collective motion of self-propelled particles with memory. , 2015, Physical review letters.

[6]  E. Ben-Jacob,et al.  Order–Disorder Phase Transition in Heterogeneous Populations of Self-propelled Particles , 2015 .

[7]  E. Ben-Jacob,et al.  Individual Pause-and-Go Motion Is Instrumental to the Formation and Maintenance of Swarms of Marching Locust Nymphs , 2014, PloS one.

[8]  F. Peruani,et al.  Diffusion, subdiffusion, and trapping of active particles in heterogeneous media. , 2013, Physical review letters.

[9]  Daniel S. Calovi,et al.  Swarming, schooling, milling: phase diagram of a data-driven fish school model , 2013, 1308.2889.

[10]  Melanie E. Moses,et al.  Synergy in ant foraging strategies: memory and communication alone and in combination , 2013, GECCO '13.

[11]  G. Baglietto,et al.  Gregarious versus individualistic behavior in Vicsek swarms and the onset of first-order phase transitions , 2013, 1303.6315.

[12]  Iain D. Couzin,et al.  Collective States, Multistability and Transitional Behavior in Schooling Fish , 2013, PLoS Comput. Biol..

[13]  Sepideh Bazazi,et al.  Intermittent Motion in Desert Locusts: Behavioural Complexity in Simple Environments , 2012, PLoS Comput. Biol..

[14]  D. Sumpter,et al.  Multi-scale Inference of Interaction Rules in Animal Groups Using Bayesian Model Selection , 2012, PLoS Comput. Biol..

[15]  L. Schimansky-Geier,et al.  Mean-field theory of collective motion due to velocity alignment , 2011, 1107.1623.

[16]  Daniel W Franks,et al.  Making noise: emergent stochasticity in collective motion. , 2010, Journal of theoretical biology.

[17]  Tamar Schlick Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .

[18]  P. Romanczuk,et al.  Collective motion of active Brownian particles in one dimension , 2010, 1008.1749.

[19]  Christian A. Yates,et al.  Inherent noise can facilitate coherence in collective swarm motion , 2009, Proceedings of the National Academy of Sciences.

[20]  G. Theraulaz,et al.  Analyzing fish movement as a persistent turning walker , 2009, Journal of mathematical biology.

[21]  G. Baglietto,et al.  Finite-size scaling analysis and dynamic study of the critical behavior of a model for the collective displacement of self-driven individuals. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  H. Chaté,et al.  Collective motion of self-propelled particles interacting without cohesion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  I. Kevrekidis,et al.  Coarse-grained analysis of stochasticity-induced switching between collective motion states , 2007, Proceedings of the National Academy of Sciences.

[24]  T. Vicsek,et al.  New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion , 2006, nlin/0611031.

[25]  Joseph J. Hale,et al.  From Disorder to Order in Marching Locusts , 2006, Science.

[26]  Ioannis G Kevrekidis,et al.  Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation. , 2005, The Journal of chemical physics.

[27]  H. Chaté,et al.  Onset of collective and cohesive motion. , 2004, Physical review letters.

[28]  I. Kevrekidis,et al.  Apparent hysteresis in a driven system with self-organized drag. , 2003, Physical review letters.

[29]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[30]  D. Kramer,et al.  The Behavioral Ecology of Intermittent Locomotion1 , 2001 .

[31]  T. Vicsek,et al.  Collective Motion , 1999, physics/9902023.

[32]  A. Barabasi,et al.  Collective Motion of Self-Propelled Particles: Kinetic Phase Transition in One Dimension , 1997, cond-mat/9712154.

[33]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[34]  F. Fish Swimming Strategies for Energy Economy , 2010 .