Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection

In standard portfolio theory, an investor is typically taken as having one stochastic objective, to maximize the random variable of portfolio return. But in this paper, we focus on investors whose purpose is to build, more broadly, a “suitable portfolio” taking additional concerns into account. Such investors would have additional stochastic and deterministic objectives that might include liquidity, dividends, number of securities in a portfolio, social responsibility, and so forth. To accommodate such investors, we develop a multiple criteria portfolio selection formulation, corroborate its appropriateness by examining the sensitivity of the nondominated frontier to various factors, and observe the conversion of the nondominated frontier to a nondominated surface. Furthermore, multiple criteria enable us to provide an explanation as to why the “market portfolio,” so often found deep below the nondominated frontier, is roughly where one would expect it to be with multiple criteria. After commenting on solvability issues, the paper concludes with the idea that what is the “modern portfolio theory” of today might well be interpreted as a projection onto two-space of a real multiple criteria portfolio selection problem from higher dimensional space.

[1]  Enrique Ballestero,et al.  Approximating the optimum portfolio for an investor with particular preferences , 1998, J. Oper. Res. Soc..

[2]  B. Stone A Linear Programming Formulation of the General Portfolio Selection Problem , 1973, Journal of Financial and Quantitative Analysis.

[3]  Panu Korhonen,et al.  An algorithm for projecting a reference direction onto the nondominated set of given points , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[4]  Enrique Ballestero,et al.  Portfolio selection on the Madrid Exchange: a compromise programming model , 2003 .

[5]  W. Michalowski,et al.  Extending the MAD portfolio optimization model to incorporate downside risk aversion , 2001 .

[6]  Constantin Zopounidis,et al.  On The Use Of Multicriteria Decision Aid Methods To Portfolio Selection , 1997 .

[7]  Theodor J. Stewart,et al.  Multiple Criteria Decision Analysis , 2001 .

[8]  Wlodzimierz Ogryczak,et al.  Multiple criteria linear programming model for portfolio selection , 2000, Ann. Oper. Res..

[9]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[10]  Harry M. Markowitz,et al.  The Early History of Portfolio Theory: 1600–1960 , 1999 .

[11]  Brian Birge,et al.  PSOt - a particle swarm optimization toolbox for use with Matlab , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[12]  Theodor J. Stewart,et al.  Multiple criteria decision analysis - an integrated approach , 2001 .

[13]  W. Sharpe,et al.  Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .

[14]  Jaap Spronk,et al.  Financial modelling: Where to go? With an illustration for portfolio management , 1997 .

[15]  Cezary Dominiak,et al.  An Application of Interactive Multiple Goal Programming on the Warsaw Stock Exchange , 1997 .

[16]  J. Martel,et al.  A multi‐criterion approach for selecting attractive portfolio , 2002 .

[17]  M. Arenas,et al.  A fuzzy goal programming approach to portfolio selection , 2001 .

[18]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[19]  Maria Grazia Speranza,et al.  On LP Solvable Models for Portfolio Selection , 2003, Informatica.

[20]  Andreas Zell,et al.  Evolutionary Algorithms and the Cardinality Constrained Portfolio Optimization Problem , 2004 .

[21]  Amelia Bilbao-Terol,et al.  A fuzzy goal programming approach to portfolio selection , 2001, Eur. J. Oper. Res..

[22]  Andrew W. Lo,et al.  IT'S 11 PM—DO YOU KNOW WHERE YOUR LIQUIDITY IS? THE MEAN-VARIANCE-LIQUIDITY FRONTIER ∗ , 2006 .

[23]  Richard Roll,et al.  A Critique of the Asset Pricing Theory''s Tests: Part I , 1977 .

[24]  H. Markowitz The optimization of a quadratic function subject to linear constraints , 1956 .

[25]  John B. Guerard,et al.  THE OPTIMIZATION OF EFFICIENT PORTFOLIOS: THE CASE FOR AN R&D QUADRATIC TERM , 2003 .

[26]  Chun-Hao Chang,et al.  Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets , 2003 .

[27]  Kathrin Klamroth,et al.  An MCDM approach to portfolio optimization , 2004, Eur. J. Oper. Res..

[28]  Christian Hurson,et al.  Multicriteria Decision Making and Portfolio Management with Arbitrage Pricing Theory , 1998 .

[29]  Manfred Gilli,et al.  A Heuristic Approach to Portfolio Optimization , 2000 .

[30]  C. A. Bana e. Costa,et al.  Multicriteria approaches for portfolio selection: an overview , 2001 .

[31]  Pekka Korhonen,et al.  A pareto race , 1988 .

[32]  C. Zopounidis Operational tools in the management of financial risks , 1997 .

[33]  Gérard Colson,et al.  An integrated multiobjective portfolio management system , 1989 .

[34]  E. Elton Modern portfolio theory and investment analysis , 1981 .

[35]  Jaap Spronk,et al.  A Multidimensional Framework for Financial-Economic Decisions , 2002 .

[36]  Hiroshi Konno,et al.  A mean-absolute deviation-skewness portfolio optimization model , 1993, Ann. Oper. Res..

[37]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[38]  Ralph E. Steuer,et al.  Multiple criteria decision making combined with finance: A categorized bibliographic study , 2003, Eur. J. Oper. Res..

[39]  Mehrdad Tamiz,et al.  A Two Staged Goal Programming Model for Portfolio Selection , 1996 .

[40]  Carlos Romero,et al.  Portfolio Selection: A Compromise Programming Solution , 1996 .

[41]  C. B. E. Costa,et al.  A multicriteria model for portfolio management , 2004 .

[42]  Arun J. Prakash,et al.  Portfolio selection and skewness: Evidence from international stock markets , 1997 .

[43]  Alexander V. Lotov,et al.  Interactive Decision Maps: Approximation and Visualization of Pareto Frontier , 2004 .

[44]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[45]  Bernard Roy,et al.  A-MCD-A - Aide Multi Critère à la Décision (Multiple Criteria Decision Aiding) , 2001 .

[46]  Wojtek Michalowski,et al.  Using attribute trade-off information in investment , 1999 .

[47]  Jaap Spronk,et al.  The Relevance of Mcdm for Financial Decisions , 2002 .

[48]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[49]  M. Thapa,et al.  Notes: A Reformulation of a Mean-Absolute Deviation Portfolio Optimization Model , 1993 .

[50]  I. M. Stancu-Minasian,et al.  Efficient Solution Concepts and Their Relations in Stochastic Multiobjective Programming , 2001 .

[51]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[52]  Zvi Bodie,et al.  Essentials of Investments , 1992 .