An Alternative Probabilistic Interpretation of the Huber Loss

The Huber loss is a robust loss function used for a wide range of regression tasks. To utilize the Huber loss, a parameter that controls the transitions from a quadratic function to an absolute value function needs to be selected. We believe the standard probabilistic interpretation that relates the Huber loss to the so-called Huber density fails to provide adequate intuition for identifying the transition point. As a result, hyper-parameter search is often necessary to determine an appropriate value. In this work, we propose an alternative probabilistic interpretation of the Huber loss, which relates minimizing the Huber loss to minimizing an upper-bound on the Kullback-Leibler divergence between Laplace distributions. Furthermore, we show that the parameters of the Laplace distributions are directly related to the transition point of the Huber loss. We demonstrate through a case study and experimentation on the Faster R-CNN object detector that our interpretation provides an intuitive way to select well-suited hyper-parameters.

[1]  Guijin Wang,et al.  Towards Good Practices for Deep 3D Hand Pose Estimation , 2017, ArXiv.

[2]  Steven L. Waslander,et al.  Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[5]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  HeKaiming,et al.  Faster R-CNN , 2017 .

[8]  Yong-Sheng Chen,et al.  Pyramid Stereo Matching Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[9]  Kaiming He,et al.  Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[10]  Р Ю Чуйков,et al.  Обнаружение транспортных средств на изображениях загородных шоссе на основе метода Single shot multibox Detector , 2017 .

[11]  Steven Lake Waslander,et al.  Joint 3D Proposal Generation and Object Detection from View Aggregation , 2017, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[12]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[13]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[14]  Iasonas Kokkinos,et al.  DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Sanja Fidler,et al.  Monocular 3D Object Detection for Autonomous Driving , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Abhinav Gupta,et al.  Training Region-Based Object Detectors with Online Hard Example Mining , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  K. Lange Convergence of EM image reconstruction algorithms with Gibbs smoothing. , 1990, IEEE transactions on medical imaging.

[20]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[21]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[22]  Koby Crammer,et al.  Robust Forward Algorithms via PAC-Bayes and Laplace Distributions , 2014, AISTATS.

[23]  Bin Yang,et al.  PIXOR: Real-time 3D Object Detection from Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.