Evolutionary multi-objective optimisation with preferences for multivariable PI controller tuning

We present an evolutionary multiobjective optimisation approach for PI controller tuning.This approach incorporates designer's preferences into the optimisation process.The methodology is evaluated in a multivariable process.It is possible to improve pertinency of the approximated Pareto front. Multi-objective optimisation design procedures have shown to be a valuable tool for control engineers. They enable the designer having a close embedment of the tuning process for a wide variety of applications. In such procedures, evolutionary multi-objective optimisation has been extensively used for PI and PID controller tuning; one reason for this is due to their flexibility to include mechanisms in order to enhance convergence and diversity. Although its usability, when dealing with multi-variable processes, the resulting Pareto front approximation might not be useful, due to the number of design objectives stated. That is, a vast region of the objective space might be impractical or useless a priori, due to the strong degradation in some of the design objectives. In this paper preference handling techniques are incorporated into the optimisation process, seeking to improve the pertinency of the approximated Pareto front for multi-variable PI controller tuning. That is, the inclusion of preferences into the optimisation process, in order to seek actively for a pertinent Pareto front approximation. With such approach, it is possible to tune a multi-variable PI controller, fulfilling several design objectives, using previous knowledge from the designer on the expected trade-off performance. This is validated with a well-known benchmark example in multi-variable control. Control tests show the usefulness of the proposed approach when compared with other tuning techniques.

[1]  R. K. Wood,et al.  Terminal composition control of a binary distillation column , 1973 .

[2]  Shu-Hsien Liao,et al.  Expert system methodologies and applications - a decade review from 1995 to 2004 , 2005, Expert Syst. Appl..

[3]  António E. Ruano,et al.  Intelligent Control Systems using Computational Intelligence Techniques , 2005 .

[4]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[5]  Furong Gao,et al.  Multi-objective optimization and selection for the PI control of ALSTOM gasifier problem , 2010 .

[6]  Belaid Aouni,et al.  Group Decision Makers' Preferences Modelling within the Goal Programming Model: An Overview and a Typology , 2012 .

[7]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[8]  Shankar P. Bhattacharyya,et al.  New results on the synthesis of PID controllers , 2002, IEEE Trans. Autom. Control..

[9]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[10]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[11]  Xavier Blasco Ferragud,et al.  Physical programming for preference driven evolutionary multi-objective optimization , 2014, Appl. Soft Comput..

[12]  Cross-Application Perspectives : Application and Market Requirements , 2011 .

[13]  S. Baskar,et al.  Covariance matrix adaptation evolution strategy based design of centralized PID controller , 2010, Expert Syst. Appl..

[14]  K.J. ÅSTRÖM,et al.  Design of PI Controllers based on Non-Convex Optimization , 1998, Autom..

[15]  Chang-Chieh Hang,et al.  Autotuning of multiloop proportional-integral controllers using relay feedback , 1993 .

[16]  Ponnuthurai N. Suganthan,et al.  Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization , 2011, Inf. Sci..

[17]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[18]  Minrui Fei,et al.  Comparative performance analysis of various binary coded PSO algorithms in multivariable PID controller design , 2012, Expert Syst. Appl..

[19]  Min-Sen Chiu,et al.  Robust PID controller design via LMI approach , 2002 .

[20]  Xavier Blasco Ferragud,et al.  Multiobjective evolutionary algorithms for multivariable PI controller design , 2012, Expert Syst. Appl..

[21]  Tore Hägglund,et al.  The future of PID control , 2000 .

[22]  Ramón Vilanova,et al.  Multiobjective tuning of PI controller using the NNC Method: Simplified problem definition and guidelines for decision making , 2013, 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA).

[23]  Shiow-Fen Hwang,et al.  A Novel Intelligent Multiobjective Simulated Annealing Algorithm for Designing Robust PID Controllers , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[24]  Gilberto Reynoso-Meza,et al.  Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas , 2013 .

[25]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[26]  Leandro dos Santos Coelho,et al.  Efficient Sampling of PI Controllers in Evolutionary Multiobjective Optimization , 2015, GECCO.

[27]  Achille Messac,et al.  Physical programming - Effective optimization for computational design , 1996 .

[28]  Piero P. Bonissone,et al.  Multicriteria decision making (mcdm): a framework for research and applications , 2009, IEEE Computational Intelligence Magazine.

[29]  Gilberto Reynoso-Meza,et al.  Controller tuning using evolutionary multi-objective optimisation: Current trends and applications , 2014 .

[30]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[31]  Kiam Heong Ang,et al.  PID control system analysis and design , 2006, IEEE Control Systems.

[32]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[33]  John A. Robinson Engineering Thinking and Rhetoric , 1998 .

[34]  S. Baskar,et al.  Evolutionary algorithms based design of multivariable PID controller , 2009, Expert Syst. Appl..

[35]  Moonyong Lee,et al.  Analytical Design of Multiloop PID Controllers for Desired Closed-Loop Responses (R&D Note) , 2004 .

[36]  Moonyong Lee,et al.  Independent design of multi-loop PI/PID controllers for interacting multivariable processes , 2010 .

[37]  K.J. Astrom,et al.  Design of PID controllers based on constrained optimization , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[38]  Alberto Herreros,et al.  Design of PID-type controllers using multiobjective genetic algorithms. , 2002, ISA transactions.

[39]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[40]  Christopher A. Mattson,et al.  Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization , 2005 .

[41]  Rubén M. Lorenzo,et al.  An auto-tuning PID control system based on genetic algorithms to provide delay guarantees in Passive Optical Networks , 2015, Expert Syst. Appl..

[42]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[43]  Pedro Ponce,et al.  A novel robust liquid level controller for coupled-tanks systems using artificial hydrocarbon networks , 2015, Expert Syst. Appl..

[44]  R. Toscano A simple robust PI/PID controller design via numerical optimization approach , 2004 .

[45]  Frank L. Lewis,et al.  Computational intelligence in control , 2014, Annu. Rev. Control..

[46]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[47]  Vineet Kumar,et al.  A fractional order fuzzy PID controller for binary distillation column control , 2015, Expert Syst. Appl..

[48]  Ramon Vilanova,et al.  Control PID robusto: Una visión panorámica , 2011 .

[49]  Spyros G. Tzafestas The global goal and abilities of Intelligent Control , 2007, 2007 European Control Conference (ECC).

[50]  Pedro Albertos Lights and shadows of the Intelligent control , 2007, 2007 European Control Conference (ECC).

[51]  Leandro dos Santos Coelho,et al.  A tuning strategy for multivariable PI and PID controllers using differential evolution combined with chaotic Zaslavskii map , 2011, Expert Syst. Appl..

[52]  Wen Tan,et al.  Tuning of PID controllers for boiler-turbine units. , 2004, ISA transactions.

[53]  Weng Khuen Ho,et al.  Tuning of Multiloop Proportional−Integral−Derivative Controllers Based on Gain and Phase Margin Specifications , 1997 .

[54]  J. P. King,et al.  Optimization of adaptive fuzzy logic controller using novel combined evolutionary algorithms, and its application in Diez Lagos flood controlling system, Southern New Mexico , 2016, Expert Syst. Appl..

[55]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[56]  William L. Luyben,et al.  Simple method for tuning SISO controllers in multivariable systems , 1986 .

[57]  Gilberto Reynoso-Meza,et al.  A stabilizing PID controller sampling procedure for stochastic optimizers , 2014 .

[58]  A. E. Ruano,et al.  Intelligent control - the road ahead , 2007, 2007 European Control Conference (ECC).

[59]  Xavier Blasco Ferragud,et al.  Comparison of design concepts in multi-criteria decision-making using level diagrams , 2013, Inf. Sci..