FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells

[1]  I. Barshack,et al.  Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence , 2019, Cell.

[2]  Andrew R. Morton,et al.  Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma , 2019, The Journal of experimental medicine.

[3]  E. V. Van Allen,et al.  Genomic correlates of response to immune checkpoint blockade , 2019, Nature Medicine.

[4]  Peter A. Jones,et al.  Epigenetic therapy in immune-oncology , 2019, Nature Reviews Cancer.

[5]  S. Kulp,et al.  SUV39H1 Represses the Expression of Cytotoxic T-Lymphocyte Effector Genes to Promote Colon Tumor Immune Evasion , 2019, Cancer Immunology Research.

[6]  Qiulian Wu,et al.  N 6 -methyladenine DNA Modification in Glioblastoma , 2018, Cell.

[7]  L. Galluzzi,et al.  Cytosolic DNA Sensing in Organismal Tumor Control. , 2018, Cancer Cell.

[8]  D. D. De Carvalho,et al.  Deregulation of Retroelements as an Emerging Therapeutic Opportunity in Cancer. , 2018, Trends in cancer.

[9]  G. Freeman,et al.  LSD1 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade , 2018, Cell.

[10]  Zhijian J. Chen,et al.  The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer , 2018, The Journal of experimental medicine.

[11]  Steven J. M. Jones,et al.  The Immune Landscape of Cancer , 2018, Immunity.

[12]  H. Madhani,et al.  Ten principles of heterochromatin formation and function , 2017, Nature Reviews Molecular Cell Biology.

[13]  Samuel F. Bakhoum,et al.  Chromosomal instability drives metastasis through a cytosolic DNA response , 2017, Nature.

[14]  P. Rochaix,et al.  TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma , 2017, Nature Communications.

[15]  C. Zahnow,et al.  Epigenetic Therapy Ties MYC Depletion to Reversing Immune Evasion and Treating Lung Cancer , 2017, Cell.

[16]  M. Ringnér,et al.  Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma , 2017, Nature Communications.

[17]  T. Chan,et al.  Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab , 2017, Cell.

[18]  Nir Hacohen,et al.  Resistance to checkpoint blockade therapy through inactivation of antigen presentation , 2017, Nature Communications.

[19]  E. Selker,et al.  Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in Neurospora crassa , 2017, Proceedings of the National Academy of Sciences.

[20]  Martin A. M. Reijns,et al.  cGAS surveillance of micronuclei links genome instability to innate immunity , 2017, Nature.

[21]  Paul G. Thomas,et al.  De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation , 2017, Cell.

[22]  U. Lehmann,et al.  Transposable Elements in Human Cancer: Causes and Consequences of Deregulation , 2017, International journal of molecular sciences.

[23]  J. Wargo,et al.  Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy , 2017, Cell.

[24]  C. Feschotte,et al.  Regulatory activities of transposable elements: from conflicts to benefits , 2016, Nature Reviews Genetics.

[25]  F. Dick,et al.  An RB-EZH2 Complex Mediates Silencing of Repetitive DNA Sequences. , 2016, Molecular cell.

[26]  Hyoung-Pyo Kim,et al.  Epigenetic regulation of long noncoding RNA UCA1 by SATB1 in breast cancer , 2016, BMB reports.

[27]  J. Wargo,et al.  Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy , 2016, Cell.

[28]  T. Graeber,et al.  Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. , 2016, The New England journal of medicine.

[29]  M. Lorincz,et al.  Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire. , 2016, Molecular cell.

[30]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[31]  J. Stoye,et al.  Immune responses to endogenous retroelements: taking the bad with the good , 2016, Nature Reviews Immunology.

[32]  M. Beckmann,et al.  Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses , 2016, Cell.

[33]  R. Copeland,et al.  PRC2 and SWI/SNF Chromatin Remodeling Complexes in Health and Disease. , 2016, Biochemistry.

[34]  J. Parker,et al.  A Role for Widely Interspaced Zinc Finger (WIZ) in Retention of the G9a Methyltransferase on Chromatin* , 2015, The Journal of Biological Chemistry.

[35]  Trevor J Pugh,et al.  DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts , 2015, Cell.

[36]  H. Ditzel,et al.  Oncogenic cancer/testis antigens: prime candidates for immunotherapy , 2015, Oncotarget.

[37]  R. Neubig,et al.  FBXO44-Mediated Degradation of RGS2 Protein Uniquely Depends on a Cullin 4B/DDB1 Complex , 2015, PloS one.

[38]  A. Vashisht,et al.  The Association of the Xeroderma Pigmentosum Group D DNA Helicase (XPD) with Transcription Factor IIH Is Regulated by the Cytosolic Iron-Sulfur Cluster Assembly Pathway* , 2015, The Journal of Biological Chemistry.

[39]  S. Gasser,et al.  Repeat DNA in genome organization and stability. , 2015, Current opinion in genetics & development.

[40]  Ole N Jensen,et al.  Two distinct modes for propagation of histone PTMs across the cell cycle , 2015, Genes & development.

[41]  R. Emerson,et al.  PD-1 blockade induces responses by inhibiting adaptive immune resistance , 2014, Nature.

[42]  J. Martens,et al.  Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. , 2014, Molecular cell.

[43]  N. Neretti,et al.  Transcriptional landscape of repetitive elements in normal and cancer human cells , 2014, BMC Genomics.

[44]  D. Maiorano,et al.  Molecular Mechanisms of DNA Replication Checkpoint Activation , 2014, Genes.

[45]  P. Ménard,et al.  Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components , 2014, Nature Cell Biology.

[46]  Y. Shang,et al.  CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing , 2013, Oncogene.

[47]  R. Bremner,et al.  A rapid and efficient method to purify proteins at replication forks under native conditions. , 2013, BioTechniques.

[48]  Michele Pagano,et al.  Mechanisms and function of substrate recruitment by F-box proteins , 2013, Nature Reviews Molecular Cell Biology.

[49]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[50]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[51]  Huili Hu,et al.  CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis. , 2012, Cancer cell.

[52]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[53]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[54]  B. Zhu,et al.  A model for mitotic inheritance of histone lysine methylation , 2012, EMBO reports.

[55]  P. Wade,et al.  Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin , 2011, Molecular biology of the cell.

[56]  J. Mpindi,et al.  A cell spot microarray method for production of high density siRNA transfection microarrays , 2011, BMC Genomics.

[57]  W. Hahn,et al.  Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer , 2011, Nature Cell Biology.

[58]  Anindya Dutta,et al.  CRL4Cdt2 , 2011 .

[59]  Hanbo Chen,et al.  VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R , 2011, BMC Bioinformatics.

[60]  E. Selker,et al.  DNA Methylation and Normal Chromosome Behavior in Neurospora Depend on Five Components of a Histone Methyltransferase Complex, DCDC , 2010, PLoS genetics.

[61]  Miriam K. Konkel,et al.  A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. , 2010, Seminars in cancer biology.

[62]  R. Martienssen,et al.  RNA Interference Guides Histone Modification during the S Phase of Chromosomal Replication , 2008, Current Biology.

[63]  M. Zofall,et al.  Cell cycle control of centromeric repeat transcription and heterochromatin assembly , 2008, Nature.

[64]  D. Gilbert,et al.  Proliferation-dependent and cell cycle–regulated transcription of mouse pericentric heterochromatin , 2007, The Journal of cell biology.

[65]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[66]  R. Kobayashi,et al.  CUL4–DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation , 2006, Nature Cell Biology.

[67]  K. Honda,et al.  Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors , 2006 .

[68]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Martin Radolf,et al.  The profile of repeat‐associated histone lysine methylation states in the mouse epigenome , 2005, The EMBO journal.

[70]  G. Almouzni,et al.  Histone H3.1 and H3.3 Complexes Mediate Nucleosome Assembly Pathways Dependent or Independent of DNA Synthesis , 2004, Cell.

[71]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[72]  M. Ehrlich,et al.  DNA methylation in cancer: too much, but also too little , 2002, Oncogene.