Mass Spectrometry and Protein Analysis

Mass spectrometry is a central analytical technique for protein research and for the study of biomolecules in general. Driven by the need to identify, characterize, and quantify proteins at ever increasing sensitivity and in ever more complex samples, a wide range of new mass spectrometry–based analytical platforms and experimental strategies have emerged. Here we review recent advances in mass spectrometry instrumentation in the context of current and emerging research strategies in protein science.

[1]  M. Karas,et al.  Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. , 1988, Analytical chemistry.

[2]  M. Mann,et al.  Electrospray ionization for mass spectrometry of large biomolecules. , 1989, Science.

[3]  M F Bean,et al.  Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. , 1993, Analytical chemistry.

[4]  S. Carr,et al.  Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. , 1996, Analytical biochemistry.

[5]  M. Senko,et al.  External accumulation of ions for enhanced electrospray ionization fourier transform ion cyclotron resonance mass spectrometry , 1997 .

[6]  F. McLafferty,et al.  Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process , 1998 .

[7]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[8]  Jennifer M. Campbell,et al.  The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. , 2000, Analytical chemistry.

[9]  X. Yao,et al.  Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. , 2001, Analytical chemistry.

[10]  R. Aebersold,et al.  Mass spectrometry in proteomics. , 2001, Chemical reviews.

[11]  R. Aebersold,et al.  A systematic approach to the analysis of protein phosphorylation , 2001, Nature Biotechnology.

[12]  James W. Hager,et al.  A new linear ion trap mass spectrometer , 2002 .

[13]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[14]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[15]  N. Anderson,et al.  The Human Plasma Proteome , 2002, Molecular & Cellular Proteomics.

[16]  Ljiljana Paša-Tolić,et al.  An accurate mass tag strategy for quantitative and high‐throughput proteome measurements , 2002, Proteomics.

[17]  J. Shabanowitz,et al.  Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae , 2002, Nature Biotechnology.

[18]  Andrew H. Thompson,et al.  Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. , 2003, Analytical chemistry.

[19]  P. Kearney,et al.  Bioinformatics Meets Proteomics - Bridging the Gap between Massspectrometry Data Analysis and Cell Biology , 2003, J. Bioinform. Comput. Biol..

[20]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[21]  I. Chu,et al.  Unique scanning capabilities of a new hybrid linear ion trap mass spectrometer (Q TRAP) used for high sensitivity proteomics applications , 2003, Proteomics.

[22]  Ruedi Aebersold,et al.  Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry , 2003, Nature Biotechnology.

[23]  A. Makarov,et al.  Interfacing the orbitrap mass analyzer to an electrospray ion source. , 2003, Analytical chemistry.

[24]  J. Shabanowitz,et al.  Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  G. Guiochon,et al.  Heterogeneous adsorption of 1-indanol on cellulose tribenzoate and adsorption energy distribution of the two enantiomers. , 2004, Analytical chemistry.

[26]  Ruedi Aebersold,et al.  The Need for Guidelines in Publication of Peptide and Protein Identification Data , 2004, Molecular & Cellular Proteomics.

[27]  M. Mann,et al.  Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[29]  David A Michels,et al.  Capillary sieving electrophoresis/micellar electrokinetic capillary chromatography for two-dimensional protein fingerprinting of single mammalian cells. , 2004, Analytical chemistry.

[30]  Nichole L. King,et al.  Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry , 2004, Genome Biology.

[31]  Patrick G. A. Pedrioli,et al.  A tool to visualize and evaluate data obtained by liquid chromatography-electrospray ionization-mass spectrometry. , 2004, Analytical chemistry.

[32]  A. Makarov,et al.  The Orbitrap: a new mass spectrometer. , 2005, Journal of mass spectrometry : JMS.

[33]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[34]  David E. Misek,et al.  Intact-protein-based High-resolution Three-dimensional Quantitative Analysis System for Proteome Profiling of Biological Fluids* , 2005, Molecular & Cellular Proteomics.

[35]  R. Aebersold,et al.  Scoring proteomes with proteotypic peptide probes , 2005, Nature Reviews Molecular Cell Biology.