Spatial thermal dose delivery in atmospheric pressure plasma jets

Author(s): Gidon, D; Graves, DB; Mesbah, A | Abstract: © 2019 IOP Publishing Ltd. Atmospheric pressure plasma jets (APPJs) are increasingly used in plasma medicine and materials processing applications. Reproducible and effective operation of APPJs requires regulating the cumulative effects of plasma on a target substrate in the face of variabilities and exogenous disturbances. This article investigates spatial delivery of thermal effects - thermal dose - of plasma using a kHz-excited APPJ in helium translated over a dielectric substrate. A dose metric is presented for quantifying the cumulative, nonlinear thermal effects of plasma along the translation trajectory of the APPJ. An optimization-based feedback control strategy is proposed for real-time regulation of thermal dose delivery using spatial measurements of substrate temperature. Experimental investigation reveals that feedback control is crucial for achieving spatially uniform dose delivery.

[1]  David B. Graves,et al.  Model-Based Feedback Control of a kHz-Excited Atmospheric Pressure Plasma Jet , 2018, IEEE Transactions on Radiation and Plasma Medical Sciences.

[2]  K. Weltmann,et al.  On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device , 2016 .

[3]  J. L. Roti,et al.  Cellular responses to hyperthermia (40-46°C) : Cell killing and molecular events , 2008 .

[4]  W. Dewey,et al.  Thermal dose determination in cancer therapy. , 1984, International journal of radiation oncology, biology, physics.

[5]  P. Wust,et al.  The cellular and molecular basis of hyperthermia. , 2002, Critical reviews in oncology/hematology.

[6]  M. Morari,et al.  Internal model control: PID controller design , 1986 .

[7]  Eric Johnsen,et al.  Helium atmospheric pressure plasma jets touching dielectric and metal surfaces , 2015 .

[8]  Gregor E. Morfill,et al.  Characterization of microwave plasma torch for decontamination , 2008 .

[9]  S. Ji,et al.  Effect of the Grounded Electrode on Cold Ar Atmospheric Pressure Plasma Jet Generated With a Simple DBD Configuration , 2014, IEEE Transactions on Plasma Science.

[10]  K. Weltmann,et al.  Back and forth directed plasma bullets in a helium atmospheric pressure needle-to-plane discharge with oxygen admixtures , 2012 .

[11]  T. von Woedtke,et al.  Clinical Plasma Medicine: State and Perspectives of in Vivo Application of Cold Atmospheric Plasma , 2014 .

[12]  Stephan Reuter,et al.  Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry , 2013 .

[13]  David B. Graves,et al.  Effective dose delivery in atmospheric pressure plasma jets for plasma medicine: a model predictive control approach , 2017 .

[14]  L. Raja,et al.  Run-to-run variations, asymmetric pulses, and long time-scale transient phenomena in dielectric-barrier atmospheric pressure glow discharges , 2007 .

[15]  P. Higgins,et al.  Comparison of dynamic and step-and-shoot intensity-modulated radiation therapy planning and delivery. , 2004, Medical dosimetry : official journal of the American Association of Medical Dosimetrists.

[16]  Steffen Brinckmann,et al.  Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically , 2013, Journal of The Royal Society Interface.

[17]  Ilarion Mihaila,et al.  Time Behaviour of Helium Atmospheric Pressure Plasma Jet Electrical and Optical Parameters , 2017 .

[18]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[19]  Moritz Diehl,et al.  CasADi -- A symbolic package for automatic differentiation and optimal control , 2012 .

[20]  P. J. Hoopes,et al.  Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia , 2003, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[21]  Mounir Laroussi,et al.  Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure , 2004 .

[22]  David B. Graves,et al.  Model predictive control of thermal effects of an atmospheric pressure plasma jet for biomedical applications , 2016, 2016 American Control Conference (ACC).

[23]  Ronny Brandenburg,et al.  Atmospheric Pressure Plasma Jet for Medical Therapy: Plasma Parameters and Risk Estimation , 2009 .

[24]  Hans-Robert Metelmann,et al.  Treating cancer with cold physical plasma: On the way to evidence‐based medicine , 2018 .

[25]  Gary A. Ezzell,et al.  The overshoot phenomenon in step‐and‐shoot IMRT delivery , 2001, Journal of applied clinical medical physics.

[26]  W. Stolz,et al.  Non-thermal plasma—More than five years of clinical experience , 2013 .

[27]  R. Sensenig,et al.  Live Pig Skin Tissue and Wound Toxicity of Cold Plasma Treatment , 2011 .