Feynman graph polynomials

The integrand of any multiloop integral is characterized after Feynman parametrization by two polynomials. In this review we summarize the properties of these polynomials. Topics covered in this paper include among others: spanning trees and spanning forests, the all-minors matrix-tree theorem, recursion relations due to contraction and deletion of edges, Dodgson's identity and matroids.

[1]  K. Yeats,et al.  Spanning Forest Polynomials and the Transcendental Weight of Feynman Graphs , 2009, 0910.5429.

[2]  F. Brown On the periods of some Feynman integrals , 2009, 0910.0114.

[3]  O. Schnetz Quantum field theory over F_q , 2009, 0909.0905.

[4]  M. Marcolli,et al.  Feynman motives and deletion-contraction relations , 2009, 0907.3225.

[5]  J. A. M. Vermaseren,et al.  The Multiple Zeta Value data mine , 2009, Comput. Phys. Commun..

[6]  M. Marcolli,et al.  Parametric Feynman integrals and determinant hypersurfaces , 2009, 0901.2107.

[7]  Y. Andr'e An introduction to motivic zeta functions of motives , 2008, 0812.3920.

[8]  M. Marcolli,et al.  ALGEBRO-GEOMETRIC FEYNMAN RULES , 2008, 0811.2514.

[9]  V. Rivasseau,et al.  Topological Graph Polynomials and Quantum Field Theory, Part I: Heat Kernel Theories , 2008, 0811.0186.

[10]  S. Bloch Motives associated to sums of graphs , 2008, 0810.1313.

[11]  A. Grozin Higher radiative corrections in HQET , 2008, 0809.4540.

[12]  M. Marcolli,et al.  Feynman motives of banana graphs , 2008, 0807.1690.

[13]  Criel Merino,et al.  Graph Polynomials and Their Applications II: Interrelations and Interpretations , 2008, Structural Analysis of Complex Networks.

[14]  M. Marcolli,et al.  Supermanifolds from Feynman graphs , 2008, 0806.1681.

[15]  D. Kreimer,et al.  Mixed Hodge Structures and Renormalization in Physics , 2008, 0804.4399.

[16]  Francis Brown,et al.  The Massless Higher-Loop Two-Point Function , 2008, 0804.1660.

[17]  Criel Merino,et al.  Graph Polynomials and Their Applications I: The Tutte Polynomial , 2008, Structural Analysis of Complex Networks.

[18]  S. Laporta,et al.  Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals , 2008, 0803.1007.

[19]  O. Schnetz Quantum periods: A census of \phi^4-transcendentals , 2008, 0801.2856.

[20]  Jonathan M. Borwein,et al.  Elliptic integral evaluations of Bessel moments and applications , 2008, 0801.0891.

[21]  Christian Bogner,et al.  Periods and Feynman integrals , 2007, 0711.4863.

[22]  S. Bloch,et al.  Motives associated to graphs , 2007 .

[23]  Vladimir A. Smirnov,et al.  Feynman Integral Calculus , 2006 .

[24]  E. Remiddi,et al.  Analytic treatment of the two loop equal mass sunrise graph , 2004, hep-ph/0406160.

[25]  S. Weinzierl,et al.  The massless two-loop two-point function , 2003, hep-ph/0308311.

[26]  Mukund Rangamani,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[27]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[28]  P. Belkale,et al.  Matroids motives, and a conjecture of Kontsevich , 2000, math/0012198.

[29]  John R. Stembridge,et al.  Counting points on varieties over finite fields related to a conjecture of Kontsevich , 1998 .

[30]  R. Stanley Spanning trees and a conjecture of Kontsevich , 1998, math/9806055.

[31]  George E. Andrews,et al.  Ramanujan's method in q-series congruences , 1996, Electron. J. Comb..

[32]  O. I. Zavialov Renormalized Quantum Field Theory , 1990 .

[33]  Klaus Truemper,et al.  On Whitney's 2-isomorphism theorem for graphs , 1980, J. Graph Theory.

[34]  C. Satyanarayana,et al.  Applied graph theory: Graphs and electrical networks , 1976, Proceedings of the IEEE.

[35]  I. Todorov Analytic Properties of Feynman Diagrams in Quantum Field Theory , 1973 .

[36]  Paul Roman,et al.  The Analytic S-Matrix , 1967 .

[37]  W. T. Tutte,et al.  On dichromatic polynomials , 1967 .

[38]  W. T. Tutte A ring in graph theory , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[40]  W. Marsden I and J , 2012 .

[41]  D. Kreimer,et al.  Communications in Mathematical Physics On Motives Associated to Graph Polynomials , 2006 .

[42]  P. Belkale,et al.  Periods and Igusa local zeta functions , 2003 .

[43]  S. Laporta High-precision ǫ-expansions of massive four-loop vacuum bubbles , 2002 .

[44]  John W. Moon,et al.  Some determinant expansions and the matrix-tree theorem , 1994, Discret. Math..

[45]  Christian Bogner,et al.  Operating system: Unix , 1983 .

[46]  Meeghan Sinclair,et al.  Technical reports , 1982, SIGA.

[47]  W. K. Chen,et al.  Applied Graph Theory: Graphs and Electrical Networks , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[48]  Nakanish Graph Theory and Feynman Integrals , 1971 .

[49]  R. Hwa,et al.  Homology and Feynman integrals , 1966 .

[50]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[51]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[52]  C. L. Dodgson,et al.  IV. Condensation of determinants, being a new and brief method for computing their arithmetical values , 1867, Proceedings of the Royal Society of London.

[53]  D. Kreimer,et al.  Institute for Mathematical Physics Renormalization and Resolution of Singularities Renormalization and Resolution of Singularities , 2022 .