Neural mechanism of acute stress regulation by trace aminergic signalling in the lateral habenula in male mice

[1]  M. Lourenco,et al.  Trace amine-associated receptor 1 modulates motor hyperactivity, cognition, and anxiety-like behavior in an animal model of ADHD , 2022, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[2]  Qianzi Yang,et al.  Lateral hypothalamus orexinergic inputs to lateral habenula modulate maladaptation after social defeat stress , 2021, Neurobiology of Stress.

[3]  J. Baik Stress and the dopaminergic reward system , 2020, Experimental & Molecular Medicine.

[4]  B. Puri,et al.  Trace Amine-Associated Receptor 1 (TAAR1): A new drug target for psychiatry? , 2020, Neuroscience & Biobehavioral Reviews.

[5]  Hailan Hu,et al.  Circuits and functions of the lateral habenula in health and in disease , 2020, Nature Reviews Neuroscience.

[6]  Woong Sun,et al.  Three-Dimensional Analysis of Mouse Habenula Subnuclei Reveals Reduced Volume and Gene Expression in the Lipopolysaccharide-mediated Depression Model , 2019, Experimental neurobiology.

[7]  A. Yamanaka,et al.  Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice , 2019, Nature Neuroscience.

[8]  P. Whiting,et al.  Single-Cell Quantification of mRNA Expression in The Human Brain , 2019, Scientific Reports.

[9]  Graham C. Haug,et al.  Pattern of dopamine signaling during aversive events predicts active avoidance learning , 2019, Proceedings of the National Academy of Sciences.

[10]  S. Sakata,et al.  Disentangling neuronal inhibition and inhibitory pathways in the lateral habenula , 2019, Scientific Reports.

[11]  L. Zweifel,et al.  Dopamine Neurons Reflect the Uncertainty in Fear Generalization , 2018, Neuron.

[12]  L. Garcia-Segura,et al.  A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling , 2018, Translational Psychiatry.

[13]  Hailan Hu,et al.  Ketamine blocks bursting in the lateral habenula to rapidly relieve depression , 2018, Nature.

[14]  Hailan Hu,et al.  Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression , 2018, Nature.

[15]  Hailan Hu,et al.  Lateral habenula in the pathophysiology of depression , 2018, Current Opinion in Neurobiology.

[16]  Shigenobu Kanba,et al.  Pattern of c-Fos expression induced by tail suspension test in the mouse brain , 2017, Heliyon.

[17]  P. Greengard,et al.  Elevation of p11 in lateral habenula mediates depression-like behavior , 2017, Molecular Psychiatry.

[18]  B. Ham,et al.  Down-regulation of cholinergic signaling in the habenula induces anhedonia-like behavior , 2017, Scientific Reports.

[19]  H. W. Lee,et al.  Mice subjected to uncontrollable electric shocks show depression-like behaviors irrespective of their state of helplessness , 2017, Behavioural Brain Research.

[20]  M. Barrot,et al.  Response of the Tail of the Ventral Tegmental Area to Aversive Stimuli , 2017, Neuropsychopharmacology.

[21]  R. Barrio,et al.  Thirst Is Associated with Suppression of Habenula Output and Active Stress Coping: Is there a Role for a Non-canonical Vasopressin-Glutamate Pathway? , 2016, Front. Neural Circuits.

[22]  N. Kokras,et al.  Forced swim test: What about females? , 2015, Neuropharmacology.

[23]  K. Miczek,et al.  Ventral tegmental area dopamine revisited: effects of acute and repeated stress , 2015, Psychopharmacology.

[24]  L. Yetnikoff,et al.  Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: A study in rat , 2015, The Journal of comparative neurology.

[25]  Christophe D. Proulx,et al.  GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment , 2014, Science.

[26]  Christophe D. Proulx,et al.  Reward processing by the lateral habenula in normal and depressive behaviors , 2014, Nature Neuroscience.

[27]  B. Tomberli,et al.  Membrane permeability of trace amines: Evidence for a regulated, activity‐dependent, nonexocytotic, synaptic release , 2013, Synapse.

[28]  R. Malinow,et al.  βCaMKII in Lateral Habenula Mediates Core Symptoms of Depression , 2013, Science.

[29]  E. Nestler,et al.  The brain reward circuitry in mood disorders , 2013, Nature Reviews Neuroscience.

[30]  V. Luine,et al.  Interactions between estradiol, BDNF and dendritic spines in promoting memory , 2013, Neuroscience.

[31]  P. Shepard,et al.  Lesions of the Fasciculus Retroflexus Alter Footshock-Induced cFos Expression in the Mesopontine Rostromedial Tegmental Area of Rats , 2013, PloS one.

[32]  Aaron S. Andalman,et al.  Dopamine neurons modulate neural encoding and expression of depression-related behaviour , 2012, Nature.

[33]  Romain Bourdy,et al.  A new control center for dopaminergic systems: pulling the VTA by the tail , 2012, Trends in Neurosciences.

[34]  K. Deisseroth,et al.  Rapid regulation of depression-related behaviors by control of midbrain dopamine neurons , 2012, Nature.

[35]  Alice M Stamatakis,et al.  Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance , 2012, Nature Neuroscience.

[36]  Linh Vong,et al.  Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons , 2011, Neuron.

[37]  T. Sotnikova,et al.  TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity , 2011, Proceedings of the National Academy of Sciences.

[38]  M. Pistis,et al.  Effects of Drugs of Abuse on Putative Rostromedial Tegmental Neurons, Inhibitory Afferents to Midbrain Dopamine Cells , 2011, Neuropsychopharmacology.

[39]  O. Hikosaka The habenula: from stress evasion to value-based decision-making , 2010, Nature Reviews Neuroscience.

[40]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[41]  M. Gassmann,et al.  The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system , 2009, Proceedings of the National Academy of Sciences.

[42]  Mark G. Baxter,et al.  The Rostromedial Tegmental Nucleus (RMTg), a GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses , 2009, Neuron.

[43]  M. Lohse,et al.  Kinetics of G‐protein‐coupled receptor signals in intact cells , 2008, British journal of pharmacology.

[44]  J. Moreau,et al.  Trace Amine-Associated Receptor 1 Modulates Dopaminergic Activity , 2008, Journal of Pharmacology and Experimental Therapeutics.

[45]  Scott J. Russo,et al.  Molecular Adaptations Underlying Susceptibility and Resistance to Social Defeat in Brain Reward Regions , 2007, Cell.

[46]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[47]  G. Chiellini,et al.  Trace amine‐associated receptors and their ligands , 2006, British journal of pharmacology.

[48]  M. Hoener,et al.  A renaissance in trace amines inspired by a novel GPCR family. , 2005, Trends in pharmacological sciences.

[49]  Martin Ebeling,et al.  Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. , 2005, Genomics.

[50]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[51]  Beth Borowsky,et al.  Trace amines: Identification of a family of mammalian G protein-coupled receptors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. Reis,et al.  Aromaticl-amino acid decar☐ylase in the rat brain: Immunocytochemical localization in neurons of the brain stem , 1984, Neuroscience.

[53]  D. Reis,et al.  Some neurons of the rat central nervous system contain aromatic-L-amino-acid decarboxylase but not monoamines. , 1983, Science.

[54]  G. Reynolds,et al.  Deficient production of tyramine and octopamine in cases of depression , 1979, Nature.

[55]  L. Dyck Release of some endogenous trace amines from rat striatal slices in the presence and absence of a monoamine oxidase inhibitor. , 1989, Life sciences.