EchoTube: Robust Touch Sensing along Flexible Tubes using Waveguided Ultrasound

While pressing can enable a wide variety of interesting applications, most press sensing techniques operate only at close distances and rely on fragile electronics. We present EchoTube, a robust, modular, simple, and inexpensive system for sensing low-resolution press events at a distance. EchoTube works by emitting ultrasonic pulses inside a flexible tube which acts as a waveguide and detecting reflections caused by deformations in the tube. EchoTube is deployable in a wide variety of situations: the flexibility of the tubes allows them to be wrapped around and affixed to irregular objects. Because the electronic elements are located at one end of the tube, EchoTube is robust, able to withstand crushing, impacts, water, and other adverse conditions. In this paper, we detail the design, implementation, and theory behind EchoTube; characterize its performance under different configurations; and present a variety of exemplar applications that illustrate its potential.

[1]  Wilmot Li,et al.  Lamello: Passive Acoustic Sensing for Tangible Input Components , 2015, CHI.

[2]  Tetsuya Akagi,et al.  Development of Compact Flexible Displacement Sensors Using Ultrasonic Sensor for Wearable Actuators , 2016 .

[3]  Roel Vertegaal,et al.  Sensing touch using resistive graphs , 2014, Conference on Designing Interactive Systems.

[4]  Patrick Baudisch,et al.  Modular and deformable touch-sensitive surfaces based on time domain reflectometry , 2011, UIST.

[5]  Pedro Lopes,et al.  Augmenting touch interaction through acoustic sensing , 2011, ITS '11.

[6]  Chris Harrison,et al.  TapSense: enhancing finger interaction on touch surfaces , 2011, UIST.

[7]  Buntarou Shizuki,et al.  Hover Detection Using Active Acoustic Sensing , 2016, HCI.

[8]  K. Hill,et al.  Fiber Bragg grating technology fundamentals and overview , 1997 .

[9]  Buntarou Shizuki,et al.  Touch & activate: adding interactivity to existing objects using active acoustic sensing , 2013, UIST.

[10]  Robert Xiao,et al.  Acoustic barcodes: passive, durable and inexpensive notched identification tags , 2012, UIST.

[11]  H. Tijdeman On the propagation of sound waves in cylindrical tubes , 1974 .

[12]  Gierad Laput,et al.  SqueezaPulse: Adding Interactive Input to Fabricated Objects Using Corrugated Tubes and Air Pulses , 2017, TEI.

[13]  Buntarou Shizuki,et al.  Sensing Touch Force using Active Acoustic Sensing , 2015, TEI.

[14]  Zhiyuan Li,et al.  Blowhole: Blowing-Activated Tags for Interactive 3D-Printed Models , 2018, Graphics Interface.

[15]  George W. Fitzmaurice,et al.  Exploring interactive curve and surface manipulation using a bend and twist sensitive input strip , 1999, SI3D.

[16]  Robert Xiao,et al.  Toffee: enabling ad hoc, around-device interaction with acoustic time-of-arrival correlation , 2014, MobileHCI '14.

[17]  Patrick Tracy McGowen,et al.  Accuracy of Pneumatic Road Tube Counters , 2011 .

[18]  G. Kirchhoff,et al.  Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung , 1868 .

[19]  Wojciech Matusik,et al.  Acoustic voxels , 2016, ACM Trans. Graph..

[20]  Tetsuya Akagi,et al.  Development of Flexible Displacement Sensor Using Ultrasonic Sensor for Flexible Pneumatic Robot Arm , 2015 .

[21]  P. Cawley,et al.  Rapid, Long Range Inspection of Chemical Plant Pipework Using Guided Waves , 2004 .

[22]  Jessica K. Hodgins,et al.  Prototyping robot appearance, movement, and interactions using flexible 3D printing and air pressure sensors , 2012, 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication.

[23]  M. Lowe,et al.  Defect detection in pipes using guided waves , 1998 .

[24]  Naturhistorisch-medizinischer Vereins zu Heidelberg Verhandlungen des Naturhistorisch-Medizinischen Vereins zu Heidelberg , 2009 .

[25]  Suranga Nanayakkara,et al.  UTAP - Unique Topographies for Acoustic Propagation: Designing Algorithmic Waveguides for Sensing in Interactive Malleable Interfaces , 2017, TEI.

[26]  Chris Harrison,et al.  Scratch input: creating large, inexpensive, unpowered and mobile finger input surfaces , 2008, UIST '08.