Results and Estimates on Multiple Solutions of Lidstone Boundary Value Problems

We consider the following boundary value problem (-1)ny(2n)=F(t,y), n≥ 1, t ∈ (0,1), y(2i)(0)=y(2i)(1)=0, 0≧i≧n-1. Criteria are developed for the existence of two and three positive solutions of the boundary value problem. In addition, for special cases we establish upper and lower bounds for these positive solutions. Several examples are also included to dwell upon the importance of the results obtained.

[1]  W. Ames,et al.  Nonlinear problems in abstract cones , 1988 .

[2]  Edward H. Twizell,et al.  Finite-difference methods for twelfth-order boundary-value problems , 1991 .

[3]  Ravi P. Agarwal,et al.  Lidstone polynomials and boundary value problems , 1989 .

[4]  Edward H. Twizell,et al.  Numerical methods for the solution of special sixth-order boundary-value problems , 1992 .

[5]  Leo F. Boron,et al.  Positive solutions of operator equations , 1964 .

[6]  E. H. Twizell,et al.  A sixth‐order multiderivative method for two beam problems , 1986 .

[7]  Peter Forster,et al.  Existenzaussagen und Fehlerabschätzungen bei gewissen nichtlinearen Randwertaufgaben mit gewöhnlichen Differentialgleichungen , 1967 .

[8]  M. M. Chawla,et al.  Finite difference methods for two-point boundary value problems involving high order differential equations , 1979 .

[9]  P. J. Wong,et al.  Eigenvalue characterization for (n · p) boundary-value problems , 1998, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[10]  Ravi P. Agarwal,et al.  Boundary value problems for higher order differential equations , 1986 .

[11]  E. H. Twizell,et al.  Numerical methods for the solution of special and general sixth-order boundary-value problems, with applications to Bénard layer eigenvalue problems , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  Ravi P. Agarwal,et al.  Focal Boundary Value Problems for Differential and Difference Equations , 1998 .

[13]  D. O’Regan,et al.  Positive Solutions of Differential, Difference and Integral Equations , 1998 .

[14]  Ravi P. Agarwal,et al.  Eigenvalues of Lidstone boundary value problems , 1999, Appl. Math. Comput..

[15]  E. H. Twizell,et al.  Finite-difference methods for the solution of special eighth-order boundary-value problems , 1993 .

[16]  Ravi P. Agarwal,et al.  Error Inequalities in Polynomial Interpolation and their Applications , 1993 .

[17]  S. Tirmizi,et al.  Numerical methods for unilateral problems , 1986 .

[18]  Georgios Akrivis,et al.  Boundary value problems occurring in plate deflection theory , 1982 .

[19]  Juri Toomre,et al.  Stellar convection theory. II - Single-mode study of the second convection zone in an A-type star , 1976 .

[20]  R. Leggett,et al.  Multiple positive fixed points of nonlinear operators on ordered Banach spaces , 1979 .

[21]  Ravi P. Agarwal,et al.  Quasilinearization and approximate quasilinearization for lidstone boundary value problems , 1992, Int. J. Comput. Math..

[22]  P. Baldwin,et al.  Localised instability in a bénard layer , 1987 .

[23]  E. H. Twizell Numerical Methods for Sixth-Order Boundary Value Problems , 1988 .

[24]  Edward H. Twizell,et al.  Numerical methods for eighth-, tenth- and twelfth-order eigenvalue problems arising in thermal instability , 1994, Adv. Comput. Math..

[25]  E. H. Twizell,et al.  Multiderivative methods for nonlinear beam problems , 1988 .

[26]  P. Baldwin,et al.  Asymptotic estimates of the eigenvalues of a sixth-order boundary-value problem obtained by using global phase-integral methods , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[27]  Tien D. Bui,et al.  Solving Boundary Value Problems in Plate Deflection Theory , 1981 .