Excited-state spin-resonance spectroscopy of VB− defect centers in hexagonal boron nitride

The recently discovered spin-active boron vacancy (V B ) defect center in hexagonal boron nitride (hBN) has high contrast optically-detected magnetic resonance (ODMR) at roomtemperature, with a spin-triplet ground-state that shows promise as a quantum sensor. Here we report temperature-dependent ODMR spectroscopy to probe spin within the orbital excited-state. Our experiments determine the excited-state spin Hamiltonian, including a room-temperature zero-field splitting of 2.1 GHz and a g-factor similar to that of the groundstate. We confirm that the resonance is associated with spin rotation in the excited-state using pulsed ODMR measurements, and we observe Zeeman-mediated level anti-crossings in both the orbital groundand excited-state. Our observation of a single set of excited-state spin-triplet resonance from 10 to 300 K is suggestive of symmetry-lowering of the defect system from D3h to C2v. Additionally, the excited-state ODMR has strong temperature dependence of both contrast and transverse anisotropy splitting, enabling promising avenues for quantum sensing. https://doi.org/10.1038/s41467-022-30772-z OPEN

[1]  Hongbing Cai,et al.  Excited-State Optically Detected Magnetic Resonance of Spin Defects in Hexagonal Boron Nitride. , 2021, Physical review letters.

[2]  Han Liu,et al.  Excited-State Spectroscopy of Spin Defects in Hexagonal Boron Nitride. , 2021, Nano letters.

[3]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[4]  Kenji Watanabe,et al.  Nuclear spin polarization and control in a van der Waals material , 2022 .

[5]  A. Ramsay,et al.  Excited State Spectroscopy of Boron Vacancy Defects in Hexagonal Boron Nitride Using Time-Resolved Optically Detected Magnetic Resonance. , 2021, Nano letters.

[6]  J. Tetienne Quantum sensors go flat , 2021, Nature Physics.

[7]  Johannes E. Fröch,et al.  Integration of hBN Quantum Emitters in Monolithically Fabricated Waveguides , 2021, ACS Photonics.

[8]  I. Aharonovich,et al.  Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors , 2021, Nature Communications.

[9]  P. Upadhyaya,et al.  High-Contrast Plasmonic-Enhanced Shallow Spin Defects in Hexagonal Boron Nitride for Quantum Sensing. , 2021, Nano letters.

[10]  Johannes E. Fröch,et al.  Coupling Spin Defects in Hexagonal Boron Nitride to Monolithic Bullseye Cavities. , 2021, Nano letters.

[11]  Keqiu Chen,et al.  Magnetization textures in twisted bilayer CrX3 ( X =Br, I) , 2021, Physical Review Research.

[12]  Chuan-Feng Li,et al.  Temperature-Dependent Energy-Level Shifts of Spin Defects in Hexagonal Boron Nitride , 2021, ACS Photonics.

[13]  I. Aharonovich,et al.  Room temperature coherent control of spin defects in hexagonal boron nitride , 2020, Science Advances.

[14]  J. Wrachtrup,et al.  Single-spin resonance in a van der Waals embedded paramagnetic defect , 2019, Nature Materials.

[15]  Xingyu Gao,et al.  Femtosecond Laser Writing of Spin Defects in Hexagonal Boron Nitride , 2020, 2012.03207.

[16]  A. N. Vamivakas,et al.  Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures , 2020, Nature Communications.

[17]  A. N. Vamivakas,et al.  Electric field tuning of strain-induced quantum emitters in WSe2 , 2020 .

[18]  Jun Shen,et al.  Photoluminescence, photophysics, and photochemistry of the VB− defect in hexagonal boron nitride , 2020, 2006.16474.

[19]  Weidong Zhou,et al.  Microcavity-coupled emitters in hexagonal boron nitride , 2019, Nanophotonics.

[20]  Á. Gali,et al.  Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride , 2020, npj Computational Materials.

[21]  Igor Aharonovich,et al.  Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature , 2019, Nature Materials.

[22]  Xiaodong Xu,et al.  Layer-resolved magnetic proximity effect in van der Waals heterostructures , 2020, Nature Nanotechnology.

[23]  A. N. Vamivakas,et al.  Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter , 2019, Optica.

[24]  A. Srivastava,et al.  Optical initialization of a single spin-valley in charged WSe2 quantum dots , 2018, Nature Nanotechnology.

[25]  David A. Hopper,et al.  Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature , 2018, Nature Communications.

[26]  Dirk Englund,et al.  Material platforms for spin-based photonic quantum technologies , 2018, Nature Reviews Materials.

[27]  N. Vamivakas,et al.  3D Localized Trions in Monolayer WSe2 in a Charge Tunable van der Waals Heterostructure. , 2018, Nano letters.

[28]  Vinod M. Menon,et al.  Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride , 2017, Optica.

[29]  M. Plenio,et al.  Color Centers in Hexagonal Boron Nitride Monolayers: A Group Theory and Ab Initio Analysis , 2017, 1709.05414.

[30]  G. Fuchs,et al.  Optical Absorption and Emission Mechanisms of Single Defects in Hexagonal Boron Nitride. , 2017, Physical review letters.

[31]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[32]  J. Wrachtrup,et al.  Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters , 2016, Nature Communications.

[33]  E. R. MacQuarrie,et al.  Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction , 2016, Nature Communications.

[34]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[35]  M. Spencer,et al.  Temperature Dependence of Wavelength Selectable Zero-Phonon Emission from Single Defects in Hexagonal Boron Nitride. , 2016, Nano letters.

[36]  Igor Aharonovich,et al.  Quantum emission from hexagonal boron nitride monolayers , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[37]  D. Awschalom,et al.  Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide , 2015, 1505.05651.

[38]  Martin B. Plenio,et al.  A large-scale quantum simulator on a diamond surface at room temperature , 2012, Nature Physics.

[39]  D. Awschalom,et al.  Spin coherence during optical excitation of a single nitrogen-vacancy center in diamond. , 2011, Physical review letters.

[40]  D. Awschalom,et al.  A quantum memory intrinsic to single nitrogen-vacancy centres in diamond , 2011 .

[41]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[42]  Hannes Bernien,et al.  Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond , 2010, 1010.1192.

[43]  D. Awschalom,et al.  Excited-state spin coherence of a single nitrogen–vacancy centre in diamond , 2010 .

[44]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[45]  Raymond G. Beausoleil,et al.  Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond , 2009, OPTO.

[46]  F. Jelezko,et al.  Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. , 2009, Physical review letters.

[47]  J Wrachtrup,et al.  Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. , 2008, Physical review letters.

[48]  R. Hanson,et al.  Excited-state spectroscopy using single spin manipulation in diamond. , 2008, Physical review letters.

[49]  D. Awschalom,et al.  Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond , 2005, cond-mat/0507706.