Survival Trees by Goodness of Split

Abstract A tree-based method for censored survival data is developed, based on maximizing the difference in survival between groups of patients represented by nodes in a binary tree. The method includes a pruning algorithm with optimal properties analogous to the classification and regression tree (CART) pruning algorithm. Uniform convergence of the estimates of the conditional cumulative hazard and survival functions is discussed, and an example is given to show the utility of the algorithm for developing prognostic classifications for patients.

[1]  J. Morgan,et al.  Problems in the Analysis of Survey Data, and a Proposal , 1963 .

[2]  A. Nádas On Estimating the Distribution of a Random Vector When Only the Smallest Coordinate Is Observable , 1970 .

[3]  D. Cox Regression Models and Life-Tables , 1972 .

[4]  H. Akaike A new look at the statistical model identification , 1974 .

[5]  N. Breslow,et al.  A Large Sample Study of the Life Table and Product Limit Estimates Under Random Censorship , 1974 .

[6]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[7]  R. Gill Censoring and stochastic integrals , 1980 .

[8]  R. Olshen,et al.  Consistent nonparametric regression from recursive partitioning schemes , 1980 .

[9]  D. Harrington A class of rank test procedures for censored survival data , 1982 .

[10]  D. Siegmund,et al.  Maximally Selected Chi Square Statistics , 1982 .

[11]  Jerry Halpern,et al.  Maximally Selected Chi Square Statistics for Small Samples , 1982 .

[12]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[13]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[14]  R. Olshen,et al.  Almost surely consistent nonparametric regression from recursive partitioning schemes , 1984 .

[15]  R. Olshen,et al.  Tree-structured survival analysis. , 1985, Cancer treatment reports.

[16]  A. Ciampi,et al.  Stratification by stepwise regression, correspondence analysis and recursive partition: A comparison of three methods of analysis for survival data with covaria , 1986 .

[17]  A Ciampi,et al.  RECPAM: a computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics. I. Methods and program features. , 1988, Computer methods and programs in biomedicine.

[18]  Mark R. Segal,et al.  Regression Trees for Censored Data , 1988 .

[19]  M. Segal,et al.  Postmarketing surveillance in rheumatology: analysis of purpura and upper abdominal pain. , 1988, The Journal of rheumatology.

[20]  Richard A. Becker,et al.  The New S Language , 1989 .

[21]  Mark R. Segal,et al.  Empirical Comparison of Approaches to Forming Strata: Using Classification Trees to Adjust for Covariates , 1989 .

[22]  J. Chambers,et al.  The New S Language , 1989 .

[23]  Stuart L. Crawford Extensions to the CART Algorithm , 1989, Int. J. Man Mach. Stud..

[24]  R B Davis,et al.  Exponential survival trees. , 1989, Statistics in medicine.

[25]  J. Crowley,et al.  Determinants of improved outcome in small-cell lung cancer: an analysis of the 2,580-patient Southwest Oncology Group data base. , 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[26]  P. Grambsch,et al.  Martingale-based residuals for survival models , 1990 .

[27]  R A Olshen,et al.  Prognostic significance of actual dose intensity in diffuse large-cell lymphoma: results of a tree-structured survival analysis. , 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  Art B. Owen,et al.  Discussion: Multivariate Adaptive Regression Splines , 1991 .

[29]  J. Friedman Multivariate adaptive regression splines , 1990 .

[30]  A. Barron,et al.  Discussion: Multivariate Adaptive Regression Splines , 1991 .

[31]  M. LeBlanc,et al.  Relative risk trees for censored survival data. , 1992, Biometrics.

[32]  Daryl Pregibon,et al.  Tree-based models , 1992 .